Filtered by vendor Xen Subscriptions
Total 474 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-34326 1 Xen 1 Xen 2025-06-18 7.8 High
The caching invalidation guidelines from the AMD-Vi specification (48882—Rev 3.07-PUB—Oct 2022) is incorrect on some hardware, as devices will malfunction (see stale DMA mappings) if some fields of the DTE are updated but the IOMMU TLB is not flushed. Such stale DMA mappings can point to memory ranges not owned by the guest, thus allowing access to unindented memory regions.
CVE-2023-34325 1 Xen 1 Xen 2025-06-18 7.8 High
[This CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] libfsimage contains parsing code for several filesystems, most of them based on grub-legacy code. libfsimage is used by pygrub to inspect guest disks. Pygrub runs as the same user as the toolstack (root in a priviledged domain). At least one issue has been reported to the Xen Security Team that allows an attacker to trigger a stack buffer overflow in libfsimage. After further analisys the Xen Security Team is no longer confident in the suitability of libfsimage when run against guest controlled input with super user priviledges. In order to not affect current deployments that rely on pygrub patches are provided in the resolution section of the advisory that allow running pygrub in deprivileged mode. CVE-2023-4949 refers to the original issue in the upstream grub project ("An attacker with local access to a system (either through a disk or external drive) can present a modified XFS partition to grub-legacy in such a way to exploit a memory corruption in grub’s XFS file system implementation.") CVE-2023-34325 refers specifically to the vulnerabilities in Xen's copy of libfsimage, which is decended from a very old version of grub.
CVE-2023-34323 1 Xen 1 Xen 2025-06-18 5.5 Medium
When a transaction is committed, C Xenstored will first check the quota is correct before attempting to commit any nodes. It would be possible that accounting is temporarily negative if a node has been removed outside of the transaction. Unfortunately, some versions of C Xenstored are assuming that the quota cannot be negative and are using assert() to confirm it. This will lead to C Xenstored crash when tools are built without -DNDEBUG (this is the default).
CVE-2023-34319 3 Debian, Linux, Xen 3 Debian Linux, Linux Kernel, Xen 2025-06-18 7.8 High
The fix for XSA-423 added logic to Linux'es netback driver to deal with a frontend splitting a packet in a way such that not all of the headers would come in one piece. Unfortunately the logic introduced there didn't account for the extreme case of the entire packet being split into as many pieces as permitted by the protocol, yet still being smaller than the area that's specially dealt with to keep all (possible) headers together. Such an unusual packet would therefore trigger a buffer overrun in the driver.
CVE-2023-46835 1 Xen 1 Xen 2025-06-17 5.5 Medium
The current setup of the quarantine page tables assumes that the quarantine domain (dom_io) has been initialized with an address width of DEFAULT_DOMAIN_ADDRESS_WIDTH (48) and hence 4 page table levels. However dom_io being a PV domain gets the AMD-Vi IOMMU page tables levels based on the maximum (hot pluggable) RAM address, and hence on systems with no RAM above the 512GB mark only 3 page-table levels are configured in the IOMMU. On systems without RAM above the 512GB boundary amd_iommu_quarantine_init() will setup page tables for the scratch page with 4 levels, while the IOMMU will be configured to use 3 levels only, resulting in the last page table directory (PDE) effectively becoming a page table entry (PTE), and hence a device in quarantine mode gaining write access to the page destined to be a PDE. Due to this page table level mismatch, the sink page the device gets read/write access to is no longer cleared between device assignment, possibly leading to data leaks.
CVE-2023-46837 1 Xen 1 Xen 2025-06-16 3.3 Low
Arm provides multiple helpers to clean & invalidate the cache for a given region. This is, for instance, used when allocating guest memory to ensure any writes (such as the ones during scrubbing) have reached memory before handing over the page to a guest. Unfortunately, the arithmetics in the helpers can overflow and would then result to skip the cache cleaning/invalidation. Therefore there is no guarantee when all the writes will reach the memory. This undefined behavior was meant to be addressed by XSA-437, but the approach was not sufficient.
CVE-2023-34322 1 Xen 1 Xen 2025-06-16 7.8 High
For migration as well as to work around kernels unaware of L1TF (see XSA-273), PV guests may be run in shadow paging mode. Since Xen itself needs to be mapped when PV guests run, Xen and shadowed PV guests run directly the respective shadow page tables. For 64-bit PV guests this means running on the shadow of the guest root page table. In the course of dealing with shortage of memory in the shadow pool associated with a domain, shadows of page tables may be torn down. This tearing down may include the shadow root page table that the CPU in question is presently running on. While a precaution exists to supposedly prevent the tearing down of the underlying live page table, the time window covered by that precaution isn't large enough.
CVE-2023-34324 2 Linux, Xen 2 Linux Kernel, Xen 2025-06-05 4.9 Medium
Closing of an event channel in the Linux kernel can result in a deadlock. This happens when the close is being performed in parallel to an unrelated Xen console action and the handling of a Xen console interrupt in an unprivileged guest. The closing of an event channel is e.g. triggered by removal of a paravirtual device on the other side. As this action will cause console messages to be issued on the other side quite often, the chance of triggering the deadlock is not neglectable. Note that 32-bit Arm-guests are not affected, as the 32-bit Linux kernel on Arm doesn't use queued-RW-locks, which are required to trigger the issue (on Arm32 a waiting writer doesn't block further readers to get the lock).
CVE-2023-46836 1 Xen 1 Xen 2025-06-03 4.7 Medium
The fixes for XSA-422 (Branch Type Confusion) and XSA-434 (Speculative Return Stack Overflow) are not IRQ-safe. It was believed that the mitigations always operated in contexts with IRQs disabled. However, the original XSA-254 fix for Meltdown (XPTI) deliberately left interrupts enabled on two entry paths; one unconditionally, and one conditionally on whether XPTI was active. As BTC/SRSO and Meltdown affect different CPU vendors, the mitigations are not active together by default. Therefore, there is a race condition whereby a malicious PV guest can bypass BTC/SRSO protections and launch a BTC/SRSO attack against Xen.
CVE-2023-34328 1 Xen 1 Xen 2025-06-03 5.5 Medium
[This CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] AMD CPUs since ~2014 have extensions to normal x86 debugging functionality. Xen supports guests using these extensions. Unfortunately there are errors in Xen's handling of the guest state, leading to denials of service. 1) CVE-2023-34327 - An HVM vCPU can end up operating in the context of a previous vCPUs debug mask state. 2) CVE-2023-34328 - A PV vCPU can place a breakpoint over the live GDT. This allows the PV vCPU to exploit XSA-156 / CVE-2015-8104 and lock up the CPU entirely.
CVE-2023-34327 1 Xen 1 Xen 2025-06-03 5.5 Medium
[This CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] AMD CPUs since ~2014 have extensions to normal x86 debugging functionality. Xen supports guests using these extensions. Unfortunately there are errors in Xen's handling of the guest state, leading to denials of service. 1) CVE-2023-34327 - An HVM vCPU can end up operating in the context of a previous vCPUs debug mask state. 2) CVE-2023-34328 - A PV vCPU can place a breakpoint over the live GDT. This allows the PV vCPU to exploit XSA-156 / CVE-2015-8104 and lock up the CPU entirely.
CVE-2024-45818 1 Xen 1 Xen 2025-05-20 6.5 Medium
The hypervisor contains code to accelerate VGA memory accesses for HVM guests, when the (virtual) VGA is in "standard" mode. Locking involved there has an unusual discipline, leaving a lock acquired past the return from the function that acquired it. This behavior results in a problem when emulating an instruction with two memory accesses, both of which touch VGA memory (plus some further constraints which aren't relevant here). When emulating the 2nd access, the lock that is already being held would be attempted to be re-acquired, resulting in a deadlock. This deadlock was already found when the code was first introduced, but was analysed incorrectly and the fix was incomplete. Analysis in light of the new finding cannot find a way to make the existing locking discipline work. In staging, this logic has all been removed because it was discovered to be accidentally disabled since Xen 4.7. Therefore, we are fixing the locking problem by backporting the removal of most of the feature. Note that even with the feature disabled, the lock would still be acquired for any accesses to the VGA MMIO region.
CVE-2023-46841 2 Fedoraproject, Xen 2 Fedora, Xen 2025-05-12 6.5 Medium
Recent x86 CPUs offer functionality named Control-flow Enforcement Technology (CET). A sub-feature of this are Shadow Stacks (CET-SS). CET-SS is a hardware feature designed to protect against Return Oriented Programming attacks. When enabled, traditional stacks holding both data and return addresses are accompanied by so called "shadow stacks", holding little more than return addresses. Shadow stacks aren't writable by normal instructions, and upon function returns their contents are used to check for possible manipulation of a return address coming from the traditional stack. In particular certain memory accesses need intercepting by Xen. In various cases the necessary emulation involves kind of replaying of the instruction. Such replaying typically involves filling and then invoking of a stub. Such a replayed instruction may raise an exceptions, which is expected and dealt with accordingly. Unfortunately the interaction of both of the above wasn't right: Recovery involves removal of a call frame from the (traditional) stack. The counterpart of this operation for the shadow stack was missing.
CVE-2022-42315 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 6.5 Medium
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42314 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 6.5 Medium
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42313 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 6.5 Medium
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42312 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 6.5 Medium
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42311 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-06 6.5 Medium
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction
CVE-2022-42327 2 Fedoraproject, Xen 2 Fedora, Xen 2025-05-05 7.1 High
x86: unintended memory sharing between guests On Intel systems that support the "virtualize APIC accesses" feature, a guest can read and write the global shared xAPIC page by moving the local APIC out of xAPIC mode. Access to this shared page bypasses the expected isolation that should exist between two guests.
CVE-2022-42317 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2025-05-05 6.5 Medium
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction