Total
4908 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-38448 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_serial: Fix race condition in TTY wakeup A race condition occurs when gs_start_io() calls either gs_start_rx() or gs_start_tx(), as those functions briefly drop the port_lock for usb_ep_queue(). This allows gs_close() and gserial_disconnect() to clear port.tty and port_usb, respectively. Use the null-safe TTY Port helper function to wake up TTY. Example CPU1: CPU2: gserial_connect() // lock gs_close() // await lock gs_start_rx() // unlock usb_ep_queue() gs_close() // lock, reset port.tty and unlock gs_start_rx() // lock tty_wakeup() // NPE | ||||
| CVE-2025-38460 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: atm: clip: Fix potential null-ptr-deref in to_atmarpd(). atmarpd is protected by RTNL since commit f3a0592b37b8 ("[ATM]: clip causes unregister hang"). However, it is not enough because to_atmarpd() is called without RTNL, especially clip_neigh_solicit() / neigh_ops->solicit() is unsleepable. Also, there is no RTNL dependency around atmarpd. Let's use a private mutex and RCU to protect access to atmarpd in to_atmarpd(). | ||||
| CVE-2025-38458 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: atm: clip: Fix NULL pointer dereference in vcc_sendmsg() atmarpd_dev_ops does not implement the send method, which may cause crash as bellow. BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: Oops: 0010 [#1] SMP KASAN NOPTI CPU: 0 UID: 0 PID: 5324 Comm: syz.0.0 Not tainted 6.15.0-rc6-syzkaller-00346-g5723cc3450bc #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffffc9000d3cf778 EFLAGS: 00010246 RAX: 1ffffffff1910dd1 RBX: 00000000000000c0 RCX: dffffc0000000000 RDX: ffffc9000dc82000 RSI: ffff88803e4c4640 RDI: ffff888052cd0000 RBP: ffffc9000d3cf8d0 R08: ffff888052c9143f R09: 1ffff1100a592287 R10: dffffc0000000000 R11: 0000000000000000 R12: 1ffff92001a79f00 R13: ffff888052cd0000 R14: ffff88803e4c4640 R15: ffffffff8c886e88 FS: 00007fbc762566c0(0000) GS:ffff88808d6c2000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 0000000041f1b000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> vcc_sendmsg+0xa10/0xc50 net/atm/common.c:644 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:727 ____sys_sendmsg+0x52d/0x830 net/socket.c:2566 ___sys_sendmsg+0x21f/0x2a0 net/socket.c:2620 __sys_sendmmsg+0x227/0x430 net/socket.c:2709 __do_sys_sendmmsg net/socket.c:2736 [inline] __se_sys_sendmmsg net/socket.c:2733 [inline] __x64_sys_sendmmsg+0xa0/0xc0 net/socket.c:2733 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf6/0x210 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f | ||||
| CVE-2025-38468 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/sched: Return NULL when htb_lookup_leaf encounters an empty rbtree htb_lookup_leaf has a BUG_ON that can trigger with the following: tc qdisc del dev lo root tc qdisc add dev lo root handle 1: htb default 1 tc class add dev lo parent 1: classid 1:1 htb rate 64bit tc qdisc add dev lo parent 1:1 handle 2: netem tc qdisc add dev lo parent 2:1 handle 3: blackhole ping -I lo -c1 -W0.001 127.0.0.1 The root cause is the following: 1. htb_dequeue calls htb_dequeue_tree which calls the dequeue handler on the selected leaf qdisc 2. netem_dequeue calls enqueue on the child qdisc 3. blackhole_enqueue drops the packet and returns a value that is not just NET_XMIT_SUCCESS 4. Because of this, netem_dequeue calls qdisc_tree_reduce_backlog, and since qlen is now 0, it calls htb_qlen_notify -> htb_deactivate -> htb_deactiviate_prios -> htb_remove_class_from_row -> htb_safe_rb_erase 5. As this is the only class in the selected hprio rbtree, __rb_change_child in __rb_erase_augmented sets the rb_root pointer to NULL 6. Because blackhole_dequeue returns NULL, netem_dequeue returns NULL, which causes htb_dequeue_tree to call htb_lookup_leaf with the same hprio rbtree, and fail the BUG_ON The function graph for this scenario is shown here: 0) | htb_enqueue() { 0) + 13.635 us | netem_enqueue(); 0) 4.719 us | htb_activate_prios(); 0) # 2249.199 us | } 0) | htb_dequeue() { 0) 2.355 us | htb_lookup_leaf(); 0) | netem_dequeue() { 0) + 11.061 us | blackhole_enqueue(); 0) | qdisc_tree_reduce_backlog() { 0) | qdisc_lookup_rcu() { 0) 1.873 us | qdisc_match_from_root(); 0) 6.292 us | } 0) 1.894 us | htb_search(); 0) | htb_qlen_notify() { 0) 2.655 us | htb_deactivate_prios(); 0) 6.933 us | } 0) + 25.227 us | } 0) 1.983 us | blackhole_dequeue(); 0) + 86.553 us | } 0) # 2932.761 us | qdisc_warn_nonwc(); 0) | htb_lookup_leaf() { 0) | BUG_ON(); ------------------------------------------ The full original bug report can be seen here [1]. We can fix this just by returning NULL instead of the BUG_ON, as htb_dequeue_tree returns NULL when htb_lookup_leaf returns NULL. [1] https://lore.kernel.org/netdev/pF5XOOIim0IuEfhI-SOxTgRvNoDwuux7UHKnE_Y5-zVd4wmGvNk2ceHjKb8ORnzw0cGwfmVu42g9dL7XyJLf1NEzaztboTWcm0Ogxuojoeo=@willsroot.io/ | ||||
| CVE-2025-38467 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/exynos: exynos7_drm_decon: add vblank check in IRQ handling If there's support for another console device (such as a TTY serial), the kernel occasionally panics during boot. The panic message and a relevant snippet of the call stack is as follows: Unable to handle kernel NULL pointer dereference at virtual address 000000000000000 Call trace: drm_crtc_handle_vblank+0x10/0x30 (P) decon_irq_handler+0x88/0xb4 [...] Otherwise, the panics don't happen. This indicates that it's some sort of race condition. Add a check to validate if the drm device can handle vblanks before calling drm_crtc_handle_vblank() to avoid this. | ||||
| CVE-2025-38473 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix null-ptr-deref in l2cap_sock_resume_cb() syzbot reported null-ptr-deref in l2cap_sock_resume_cb(). [0] l2cap_sock_resume_cb() has a similar problem that was fixed by commit 1bff51ea59a9 ("Bluetooth: fix use-after-free error in lock_sock_nested()"). Since both l2cap_sock_kill() and l2cap_sock_resume_cb() are executed under l2cap_sock_resume_cb(), we can avoid the issue simply by checking if chan->data is NULL. Let's not access to the killed socket in l2cap_sock_resume_cb(). [0]: BUG: KASAN: null-ptr-deref in instrument_atomic_write include/linux/instrumented.h:82 [inline] BUG: KASAN: null-ptr-deref in clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline] BUG: KASAN: null-ptr-deref in l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711 Write of size 8 at addr 0000000000000570 by task kworker/u9:0/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u9:0 Not tainted 6.16.0-rc4-syzkaller-g7482bb149b9f #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 Workqueue: hci0 hci_rx_work Call trace: show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:501 (C) __dump_stack+0x30/0x40 lib/dump_stack.c:94 dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120 print_report+0x58/0x84 mm/kasan/report.c:524 kasan_report+0xb0/0x110 mm/kasan/report.c:634 check_region_inline mm/kasan/generic.c:-1 [inline] kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189 __kasan_check_write+0x20/0x30 mm/kasan/shadow.c:37 instrument_atomic_write include/linux/instrumented.h:82 [inline] clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline] l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711 l2cap_security_cfm+0x524/0xea0 net/bluetooth/l2cap_core.c:7357 hci_auth_cfm include/net/bluetooth/hci_core.h:2092 [inline] hci_auth_complete_evt+0x2e8/0xa4c net/bluetooth/hci_event.c:3514 hci_event_func net/bluetooth/hci_event.c:7511 [inline] hci_event_packet+0x650/0xe9c net/bluetooth/hci_event.c:7565 hci_rx_work+0x320/0xb18 net/bluetooth/hci_core.c:4070 process_one_work+0x7e8/0x155c kernel/workqueue.c:3238 process_scheduled_works kernel/workqueue.c:3321 [inline] worker_thread+0x958/0xed8 kernel/workqueue.c:3402 kthread+0x5fc/0x75c kernel/kthread.c:464 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:847 | ||||
| CVE-2025-68274 | 1 Emiago | 1 Sipgo | 2025-12-21 | N/A |
| SIPGO is a library for writing SIP services in the GO language. Starting in version 0.3.0 and prior to version 1.0.0-alpha-1, a nil pointer dereference vulnerability is in the SIPGO library's `NewResponseFromRequest` function that affects all normal SIP operations. The vulnerability allows remote attackers to crash any SIP application by sending a single malformed SIP request without a To header. The vulnerability occurs when SIP message parsing succeeds for a request missing the To header, but the response creation code assumes the To header exists without proper nil checks. This affects routine operations like call setup, authentication, and message handling - not just error cases. This vulnerability affects all SIP applications using the sipgo library, not just specific configurations or edge cases, as long as they make use of the `NewResponseFromRequest` function. Version 1.0.0-alpha-1 contains a patch for the issue. | ||||
| CVE-2025-65564 | 1 Omec-project | 1 Upf | 2025-12-21 | 7.5 High |
| A denial-of-service vulnerability exists in the omec-upf (upf-epc-pfcpiface) in version upf-epc-pfcpiface:2.1.3-dev. When the UPF receives a PFCP Association Setup Request that is missing the mandatory Recovery Time Stamp Information Element, the association setup handler dereferences a nil pointer via IE.RecoveryTimeStamp() instead of validating the message. This results in a panic and terminates the UPF process. An attacker who can send PFCP Association Setup Request messages to the UPF's N4/PFCP endpoint can exploit this issue to repeatedly crash the UPF and disrupt user-plane services. | ||||
| CVE-2025-65566 | 1 Omec-project | 1 Upf | 2025-12-21 | 7.5 High |
| A denial-of-service vulnerability exists in the omec-project UPF (pfcpiface component) in version upf-epc-pfcpiface:2.1.3-dev. When the UPF receives a PFCP Session Report Response that is missing the mandatory Cause Information Element, the session report handler dereferences a nil pointer instead of rejecting the malformed message. This triggers a panic and terminates the UPF process. An attacker who can send PFCP Session Report Response messages to the UPF's N4/PFCP endpoint can exploit this flaw to repeatedly crash the UPF and disrupt user-plane services. | ||||
| CVE-2025-65563 | 1 Omec-project | 1 Upf | 2025-12-21 | 7.5 High |
| A denial-of-service vulnerability exists in the omec-project UPF (component upf-epc/pfcpiface) up to at least version upf-epc-pfcpiface:2.1.3-dev. When the UPF receives a PFCP Association Setup Request that is missing the mandatory NodeID Information Element, the association setup handler dereferences a nil pointer instead of validating the message, causing a panic and terminating the UPF process. An attacker who can send PFCP Association Setup Request messages to the UPF's N4/PFCP endpoint can exploit this issue to repeatedly crash the UPF and disrupt user-plane services. | ||||
| CVE-2025-65565 | 1 Omec-project | 1 Upf | 2025-12-21 | 7.5 High |
| A denial-of-service vulnerability exists in the omec-project UPF (pfcpiface component) in version upf-epc-pfcpiface:2.1.3-dev. After PFCP association is established, a PFCP Session Establishment Request that is missing the mandatory F-SEID (CPF-SEID) Information Element is not properly validated. The session establishment handler calls IE.FSEID() on a nil pointer, which triggers a panic and terminates the UPF process. An attacker who can send PFCP Session Establishment Request messages to the UPF's N4/PFCP endpoint can exploit this issue to repeatedly crash the UPF and disrupt user-plane services. | ||||
| CVE-2025-14957 | 1 Webassembly | 1 Binaryen | 2025-12-21 | 3.3 Low |
| A vulnerability was identified in WebAssembly Binaryen up to 125. This affects the function IRBuilder::makeLocalGet/IRBuilder::makeLocalSet/IRBuilder::makeLocalTee of the file src/wasm/wasm-ir-builder.cpp of the component IRBuilder. Such manipulation of the argument Index leads to null pointer dereference. Local access is required to approach this attack. The exploit is publicly available and might be used. The name of the patch is 6fb2b917a79578ab44cf3b900a6da4c27251e0d4. Applying a patch is advised to resolve this issue. | ||||
| CVE-2024-46822 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entry In a review discussion of the changes to support vCPU hotplug where a check was added on the GICC being enabled if was online, it was noted that there is need to map back to the cpu and use that to index into a cpumask. As such, a valid ID is needed. If an MPIDR check fails in acpi_map_gic_cpu_interface() it is possible for the entry in cpu_madt_gicc[cpu] == NULL. This function would then cause a NULL pointer dereference. Whilst a path to trigger this has not been established, harden this caller against the possibility. | ||||
| CVE-2024-46707 | 1 Linux | 1 Linux Kernel | 2025-12-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Make ICC_*SGI*_EL1 undef in the absence of a vGICv3 On a system with a GICv3, if a guest hasn't been configured with GICv3 and that the host is not capable of GICv2 emulation, a write to any of the ICC_*SGI*_EL1 registers is trapped to EL2. We therefore try to emulate the SGI access, only to hit a NULL pointer as no private interrupt is allocated (no GIC, remember?). The obvious fix is to give the guest what it deserves, in the shape of a UNDEF exception. | ||||
| CVE-2023-53223 | 1 Linux | 1 Linux Kernel | 2025-12-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/msm/dsi: Add missing check for alloc_ordered_workqueue Add check for the return value of alloc_ordered_workqueue as it may return NULL pointer and cause NULL pointer dereference. Patchwork: https://patchwork.freedesktop.org/patch/517646/ | ||||
| CVE-2022-50206 | 1 Linux | 1 Linux Kernel | 2025-12-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: arm64: fix oops in concurrently setting insn_emulation sysctls emulation_proc_handler() changes table->data for proc_dointvec_minmax and can generate the following Oops if called concurrently with itself: | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 | Internal error: Oops: 96000006 [#1] SMP | Call trace: | update_insn_emulation_mode+0xc0/0x148 | emulation_proc_handler+0x64/0xb8 | proc_sys_call_handler+0x9c/0xf8 | proc_sys_write+0x18/0x20 | __vfs_write+0x20/0x48 | vfs_write+0xe4/0x1d0 | ksys_write+0x70/0xf8 | __arm64_sys_write+0x20/0x28 | el0_svc_common.constprop.0+0x7c/0x1c0 | el0_svc_handler+0x2c/0xa0 | el0_svc+0x8/0x200 To fix this issue, keep the table->data as &insn->current_mode and use container_of() to retrieve the insn pointer. Another mutex is used to protect against the current_mode update but not for retrieving insn_emulation as table->data is no longer changing. | ||||
| CVE-2025-38304 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix NULL pointer deference on eir_get_service_data The len parameter is considered optional so it can be NULL so it cannot be used for skipping to next entry of EIR_SERVICE_DATA. | ||||
| CVE-2025-37938 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tracing: Verify event formats that have "%*p.." The trace event verifier checks the formats of trace events to make sure that they do not point at memory that is not in the trace event itself or in data that will never be freed. If an event references data that was allocated when the event triggered and that same data is freed before the event is read, then the kernel can crash by reading freed memory. The verifier runs at boot up (or module load) and scans the print formats of the events and checks their arguments to make sure that dereferenced pointers are safe. If the format uses "%*p.." the verifier will ignore it, and that could be dangerous. Cover this case as well. Also add to the sample code a use case of "%*pbl". | ||||
| CVE-2025-38319 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/pp: Fix potential NULL pointer dereference in atomctrl_initialize_mc_reg_table The function atomctrl_initialize_mc_reg_table() and atomctrl_initialize_mc_reg_table_v2_2() does not check the return value of smu_atom_get_data_table(). If smu_atom_get_data_table() fails to retrieve vram_info, it returns NULL which is later dereferenced. | ||||
| CVE-2024-1914 | 1 Abb | 7 Irc5, Omnicore C30, Omnicore C90xt and 4 more | 2025-12-19 | 6.5 Medium |
| An attacker who successfully exploited these vulnerabilities could cause the robot to stop, make the robot controller inaccessible. The vulnerability could potentially be exploited to perform unauthorized actions by an attacker. This vulnerability arises under specific condition when specially crafted message is processed by the system. Below are reported vulnerabilities in the Robot Ware versions. * IRC5- RobotWare 6 < 6.15.06 except 6.10.10, and 6.13.07 * OmniCore- RobotWare 7 < 7.14 | ||||