Total
5056 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-39838 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2026-01-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: prevent NULL pointer dereference in UTF16 conversion There can be a NULL pointer dereference bug here. NULL is passed to __cifs_sfu_make_node without checks, which passes it unchecked to cifs_strndup_to_utf16, which in turn passes it to cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash. This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and returns NULL early to prevent dereferencing NULL pointer. Found by Linux Verification Center (linuxtesting.org) with SVACE | ||||
| CVE-2025-56225 | 1 Fluidsynth | 1 Fluidsynth | 2026-01-23 | 7.5 High |
| fluidsynth-2.4.6 and earlier versions is vulnerable to Null pointer dereference in fluid_synth_monopoly.c, that can be triggered when loading an invalid midi file. | ||||
| CVE-2023-53480 | 1 Linux | 1 Linux Kernel | 2026-01-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: kobject: Add sanity check for kset->kobj.ktype in kset_register() When I register a kset in the following way: static struct kset my_kset; kobject_set_name(&my_kset.kobj, "my_kset"); ret = kset_register(&my_kset); A null pointer dereference exception is occurred: [ 4453.568337] Unable to handle kernel NULL pointer dereference at \ virtual address 0000000000000028 ... ... [ 4453.810361] Call trace: [ 4453.813062] kobject_get_ownership+0xc/0x34 [ 4453.817493] kobject_add_internal+0x98/0x274 [ 4453.822005] kset_register+0x5c/0xb4 [ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset] ... ... Because I didn't initialize my_kset.kobj.ktype. According to the description in Documentation/core-api/kobject.rst: - A ktype is the type of object that embeds a kobject. Every structure that embeds a kobject needs a corresponding ktype. So add sanity check to make sure kset->kobj.ktype is not NULL. | ||||
| CVE-2023-53483 | 1 Linux | 1 Linux Kernel | 2026-01-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup() devm_kzalloc() may fail, clk_data->name might be NULL and will cause a NULL pointer dereference later. [ rjw: Subject and changelog edits ] | ||||
| CVE-2025-15504 | 1 Lief-project | 1 Lief | 2026-01-22 | 3.3 Low |
| A security flaw has been discovered in lief-project LIEF up to 0.17.1. Affected by this issue is the function Parser::parse_binary of the file src/ELF/Parser.tcc of the component ELF Binary Parser. The manipulation results in null pointer dereference. The attack must be initiated from a local position. The exploit has been released to the public and may be used for attacks. Upgrading to version 0.17.2 can resolve this issue. The patch is identified as 81bd5d7ea0c390563f1c4c017c9019d154802978. It is recommended to upgrade the affected component. | ||||
| CVE-2025-21973 | 1 Linux | 1 Linux Kernel | 2026-01-22 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: fix kernel panic in the bnxt_get_queue_stats{rx | tx} When qstats-get operation is executed, callbacks of netdev_stats_ops are called. The bnxt_get_queue_stats{rx | tx} collect per-queue stats from sw_stats in the rings. But {rx | tx | cp}_ring are allocated when the interface is up. So, these rings are not allocated when the interface is down. The qstats-get is allowed even if the interface is down. However, the bnxt_get_queue_stats{rx | tx}() accesses cp_ring and tx_ring without null check. So, it needs to avoid accessing rings if the interface is down. Reproducer: ip link set $interface down ./cli.py --spec netdev.yaml --dump qstats-get OR ip link set $interface down python ./stats.py Splat looks like: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1680fa067 P4D 1680fa067 PUD 16be3b067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 UID: 0 PID: 1495 Comm: python3 Not tainted 6.14.0-rc4+ #32 5cd0f999d5a15c574ac72b3e4b907341 Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en] Code: c6 87 b5 18 00 00 02 eb a2 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 01 RSP: 0018:ffffabef43cdb7e0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffc04c8710 RCX: 0000000000000000 RDX: ffffabef43cdb858 RSI: 0000000000000000 RDI: ffff8d504e850000 RBP: ffff8d506c9f9c00 R08: 0000000000000004 R09: ffff8d506bcd901c R10: 0000000000000015 R11: ffff8d506bcd9000 R12: 0000000000000000 R13: ffffabef43cdb8c0 R14: ffff8d504e850000 R15: 0000000000000000 FS: 00007f2c5462b080(0000) GS:ffff8d575f600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000167fd0000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x20/0x70 ? page_fault_oops+0x15a/0x460 ? sched_balance_find_src_group+0x58d/0xd10 ? exc_page_fault+0x6e/0x180 ? asm_exc_page_fault+0x22/0x30 ? bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en cdd546fd48563c280cfd30e9647efa420db07bf1] netdev_nl_stats_by_netdev+0x2b1/0x4e0 ? xas_load+0x9/0xb0 ? xas_find+0x183/0x1d0 ? xa_find+0x8b/0xe0 netdev_nl_qstats_get_dumpit+0xbf/0x1e0 genl_dumpit+0x31/0x90 netlink_dump+0x1a8/0x360 | ||||
| CVE-2024-27399 | 4 Debian, Fedoraproject, Linux and 1 more | 5 Debian Linux, Fedora, Linux Kernel and 2 more | 2026-01-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout There is a race condition between l2cap_chan_timeout() and l2cap_chan_del(). When we use l2cap_chan_del() to delete the channel, the chan->conn will be set to null. But the conn could be dereferenced again in the mutex_lock() of l2cap_chan_timeout(). As a result the null pointer dereference bug will happen. The KASAN report triggered by POC is shown below: [ 472.074580] ================================================================== [ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0 [ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7 [ 472.075308] [ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.075308] Workqueue: events l2cap_chan_timeout [ 472.075308] Call Trace: [ 472.075308] <TASK> [ 472.075308] dump_stack_lvl+0x137/0x1a0 [ 472.075308] print_report+0x101/0x250 [ 472.075308] ? __virt_addr_valid+0x77/0x160 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_report+0x139/0x170 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_check_range+0x2c3/0x2e0 [ 472.075308] mutex_lock+0x68/0xc0 [ 472.075308] l2cap_chan_timeout+0x181/0x300 [ 472.075308] process_one_work+0x5d2/0xe00 [ 472.075308] worker_thread+0xe1d/0x1660 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] kthread+0x2b7/0x350 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork+0x4d/0x80 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork_asm+0x11/0x20 [ 472.075308] </TASK> [ 472.075308] ================================================================== [ 472.094860] Disabling lock debugging due to kernel taint [ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158 [ 472.096136] #PF: supervisor write access in kernel mode [ 472.096136] #PF: error_code(0x0002) - not-present page [ 472.096136] PGD 0 P4D 0 [ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI [ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.096136] Workqueue: events l2cap_chan_timeout [ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0 [ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88 [ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246 [ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865 [ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78 [ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f [ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000 [ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00 [ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000 [ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0 [ 472.096136] Call Trace: [ 472.096136] <TASK> [ 472.096136] ? __die_body+0x8d/0xe0 [ 472.096136] ? page_fault_oops+0x6b8/0x9a0 [ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0 [ 472.096136] ? do_user_addr_fault+0x1027/0x1340 [ 472.096136] ? _printk+0x7a/0xa0 [ 472.096136] ? mutex_lock+0x68/0xc0 [ 472.096136] ? add_taint+0x42/0xd0 [ 472.096136] ? exc_page_fault+0x6a/0x1b0 [ 472.096136] ? asm_exc_page_fault+0x26/0x30 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] ? mutex_lock+0x88/0xc0 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] l2cap_chan_timeo ---truncated--- | ||||
| CVE-2024-36929 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2026-01-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: core: reject skb_copy(_expand) for fraglist GSO skbs SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become invalid. Return NULL if such an skb is passed to skb_copy or skb_copy_expand, in order to prevent a crash on a potential later call to skb_gso_segment. | ||||
| CVE-2022-50501 | 1 Linux | 1 Linux Kernel | 2026-01-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: coda: Add check for dcoda_iram_alloc As the coda_iram_alloc may return NULL pointer, it should be better to check the return value in order to avoid NULL poineter dereference, same as the others. | ||||
| CVE-2022-50503 | 1 Linux | 1 Linux Kernel | 2026-01-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mtd: lpddr2_nvm: Fix possible null-ptr-deref It will cause null-ptr-deref when resource_size(add_range) invoked, if platform_get_resource() returns NULL. | ||||
| CVE-2025-38694 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2026-01-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: dib7090p: fix null-ptr-deref in dib7090p_rw_on_apb() In dib7090p_rw_on_apb, msg is controlled by user. When msg[0].buf is null and msg[0].len is zero, former checks on msg[0].buf would be passed. If accessing msg[0].buf[2] without sanity check, null pointer deref would happen. We add check on msg[0].len to prevent crash. Similar issue occurs when access msg[1].buf[0] and msg[1].buf[1]. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") | ||||
| CVE-2025-66646 | 1 Riot-os | 1 Riot | 2026-01-22 | 7.5 High |
| RIOT is an open-source microcontroller operating system, designed to match the requirements of Internet of Things (IoT) devices and other embedded devices. A vulnerability was discovered in the IPv6 fragmentation reassembly implementation of RIOT OS v2025.07. When receiving an fragmented IPv6 packet with fragment offset 0 and an empty payload, the payload pointer is set to NULL. However, the implementation still tries to copy the payload into the reassembly buffer, resulting in a NULL pointer dereference which crashes the OS (DoS). To trigger the vulnerability, the `gnrc_ipv6_ext_frag` module must be enabled and the attacker must be able to send arbitrary IPv6 packets to the victim. RIOT OS v2025.10 fixes the issue. | ||||
| CVE-2025-8114 | 2 Libssh, Redhat | 3 Libssh, Enterprise Linux, Openshift | 2026-01-22 | 4.7 Medium |
| A flaw was found in libssh, a library that implements the SSH protocol. When calculating the session ID during the key exchange (KEX) process, an allocation failure in cryptographic functions may lead to a NULL pointer dereference. This issue can cause the client or server to crash. | ||||
| CVE-2025-6395 | 1 Redhat | 7 Ceph Storage, Discovery, Enterprise Linux and 4 more | 2026-01-22 | 6.5 Medium |
| A NULL pointer dereference flaw was found in the GnuTLS software in _gnutls_figure_common_ciphersuite(). | ||||
| CVE-2022-50440 | 1 Linux | 1 Linux Kernel | 2026-01-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate the box size for the snooped cursor Invalid userspace dma surface copies could potentially overflow the memcpy from the surface to the snooped image leading to crashes. To fix it the dimensions of the copybox have to be validated against the expected size of the snooped cursor. | ||||
| CVE-2025-4478 | 2 Freerdp, Redhat | 2 Freerdp, Enterprise Linux | 2026-01-21 | 6.5 Medium |
| A flaw was found in the FreeRDP used by Anaconda's remote install feature, where a crafted RDP packet could trigger a segmentation fault. This issue causes the service to crash and remain defunct, resulting in a denial of service. It occurs pre-boot and is likely due to a NULL pointer dereference. Rebooting is required to recover the system. | ||||
| CVE-2025-39857 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2026-01-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync() BUG: kernel NULL pointer dereference, address: 00000000000002ec PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Workqueue: smc_hs_wq smc_listen_work [smc] RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc] ... Call Trace: <TASK> smcr_buf_map_link+0x211/0x2a0 [smc] __smc_buf_create+0x522/0x970 [smc] smc_buf_create+0x3a/0x110 [smc] smc_find_rdma_v2_device_serv+0x18f/0x240 [smc] ? smc_vlan_by_tcpsk+0x7e/0xe0 [smc] smc_listen_find_device+0x1dd/0x2b0 [smc] smc_listen_work+0x30f/0x580 [smc] process_one_work+0x18c/0x340 worker_thread+0x242/0x360 kthread+0xe7/0x220 ret_from_fork+0x13a/0x160 ret_from_fork_asm+0x1a/0x30 </TASK> If the software RoCE device is used, ibdev->dma_device is a null pointer. As a result, the problem occurs. Null pointer detection is added to prevent problems. | ||||
| CVE-2025-39865 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2026-01-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tee: fix NULL pointer dereference in tee_shm_put tee_shm_put have NULL pointer dereference: __optee_disable_shm_cache --> shm = reg_pair_to_ptr(...);//shm maybe return NULL tee_shm_free(shm); --> tee_shm_put(shm);//crash Add check in tee_shm_put to fix it. panic log: Unable to handle kernel paging request at virtual address 0000000000100cca Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000 [0000000000100cca] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ---- 6.6.0-39-generic #38 Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07 Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0 10/26/2022 pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : tee_shm_put+0x24/0x188 lr : tee_shm_free+0x14/0x28 sp : ffff001f98f9faf0 x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000 x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048 x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88 x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003 x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101 x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca Call trace: tee_shm_put+0x24/0x188 tee_shm_free+0x14/0x28 __optee_disable_shm_cache+0xa8/0x108 optee_shutdown+0x28/0x38 platform_shutdown+0x28/0x40 device_shutdown+0x144/0x2b0 kernel_power_off+0x3c/0x80 hibernate+0x35c/0x388 state_store+0x64/0x80 kobj_attr_store+0x14/0x28 sysfs_kf_write+0x48/0x60 kernfs_fop_write_iter+0x128/0x1c0 vfs_write+0x270/0x370 ksys_write+0x6c/0x100 __arm64_sys_write+0x20/0x30 invoke_syscall+0x4c/0x120 el0_svc_common.constprop.0+0x44/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x24/0x88 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x14c/0x15 | ||||
| CVE-2025-39876 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2026-01-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: fec: Fix possible NPD in fec_enet_phy_reset_after_clk_enable() The function of_phy_find_device may return NULL, so we need to take care before dereferencing phy_dev. | ||||
| CVE-2022-50425 | 1 Linux | 1 Linux Kernel | 2026-01-20 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly When an extended state component is not present in fpstate, but in init state, the function copies from init_fpstate via copy_feature(). But, dynamic states are not present in init_fpstate because of all-zeros init states. Then retrieving them from init_fpstate will explode like this: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... RIP: 0010:memcpy_erms+0x6/0x10 ? __copy_xstate_to_uabi_buf+0x381/0x870 fpu_copy_guest_fpstate_to_uabi+0x28/0x80 kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm] ? __this_cpu_preempt_check+0x13/0x20 ? vmx_vcpu_put+0x2e/0x260 [kvm_intel] kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? __fget_light+0xd4/0x130 __x64_sys_ioctl+0xe3/0x910 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x27/0x50 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Adjust the 'mask' to zero out the userspace buffer for the features that are not available both from fpstate and from init_fpstate. The dynamic features depend on the compacted XSAVE format. Ensure it is enabled before reading XCOMP_BV in init_fpstate. | ||||