Filtered by vendor Redhat
Subscriptions
Filtered by product Logging
Subscriptions
Total
140 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-11831 | 1 Redhat | 33 Acm, Advanced Cluster Security, Ansible Automation Platform and 30 more | 2025-06-18 | 5.4 Medium |
A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. | ||||
CVE-2024-0646 | 2 Linux, Redhat | 8 Linux Kernel, Enterprise Linux, Logging and 5 more | 2025-06-17 | 7 High |
An out-of-bounds memory write flaw was found in the Linux kernel’s Transport Layer Security functionality in how a user calls a function splice with a ktls socket as the destination. This flaw allows a local user to crash or potentially escalate their privileges on the system. | ||||
CVE-2024-0553 | 3 Fedoraproject, Gnu, Redhat | 6 Fedora, Gnutls, Enterprise Linux and 3 more | 2025-06-17 | 7.5 High |
A vulnerability was found in GnuTLS. The response times to malformed ciphertexts in RSA-PSK ClientKeyExchange differ from the response times of ciphertexts with correct PKCS#1 v1.5 padding. This issue may allow a remote attacker to perform a timing side-channel attack in the RSA-PSK key exchange, potentially leading to the leakage of sensitive data. CVE-2024-0553 is designated as an incomplete resolution for CVE-2023-5981. | ||||
CVE-2023-26159 | 2 Follow-redirects, Redhat | 14 Follow Redirects, Acm, Cluster Observability Operator and 11 more | 2025-06-17 | 7.3 High |
Versions of the package follow-redirects before 1.15.4 are vulnerable to Improper Input Validation due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches. | ||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 367 Http Server, Opensearch Data Prepper, Apisix and 364 more | 2025-06-11 | 7.5 High |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
CVE-2024-0565 | 3 Linux, Netapp, Redhat | 6 Linux Kernel, Ontap Tools, Enterprise Linux and 3 more | 2025-06-03 | 6.8 Medium |
An out-of-bounds memory read flaw was found in receive_encrypted_standard in fs/smb/client/smb2ops.c in the SMB Client sub-component in the Linux Kernel. This issue occurs due to integer underflow on the memcpy length, leading to a denial of service. | ||||
CVE-2024-0567 | 5 Debian, Fedoraproject, Gnu and 2 more | 9 Debian Linux, Fedora, Gnutls and 6 more | 2025-06-02 | 7.5 High |
A vulnerability was found in GnuTLS, where a cockpit (which uses gnuTLS) rejects a certificate chain with distributed trust. This issue occurs when validating a certificate chain with cockpit-certificate-ensure. This flaw allows an unauthenticated, remote client or attacker to initiate a denial of service attack. | ||||
CVE-2024-12085 | 1 Redhat | 8 Enterprise Linux, Logging, Openshift and 5 more | 2025-05-22 | 7.5 High |
A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time. | ||||
CVE-2022-32149 | 2 Golang, Redhat | 10 Text, Acm, Container Native Virtualization and 7 more | 2025-05-15 | 7.5 High |
An attacker may cause a denial of service by crafting an Accept-Language header which ParseAcceptLanguage will take significant time to parse. | ||||
CVE-2022-37603 | 2 Redhat, Webpack.js | 8 Jboss Data Grid, Logging, Migration Toolkit Applications and 5 more | 2025-05-15 | 7.5 High |
A Regular expression denial of service (ReDoS) flaw was found in Function interpolateName in interpolateName.js in webpack loader-utils 2.0.0 via the url variable in interpolateName.js. | ||||
CVE-2022-41723 | 2 Golang, Redhat | 22 Go, Hpack, Http2 and 19 more | 2025-05-05 | 7.5 High |
A maliciously crafted HTTP/2 stream could cause excessive CPU consumption in the HPACK decoder, sufficient to cause a denial of service from a small number of small requests. | ||||
CVE-2023-26136 | 2 Redhat, Salesforce | 8 Acm, Jboss Enterprise Application Platform, Logging and 5 more | 2025-05-01 | 6.5 Medium |
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. This issue arises from the manner in which the objects are initialized. | ||||
CVE-2023-0286 | 3 Openssl, Redhat, Stormshield | 13 Openssl, Enterprise Linux, Jboss Core Services and 10 more | 2025-05-01 | 7.4 High |
There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network. | ||||
CVE-2021-20190 | 6 Apache, Debian, Fasterxml and 3 more | 10 Nifi, Debian Linux, Jackson-databind and 7 more | 2025-05-01 | 8.1 High |
A flaw was found in jackson-databind before 2.9.10.7. FasterXML mishandles the interaction between serialization gadgets and typing. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. | ||||
CVE-2020-35728 | 5 Debian, Fasterxml, Netapp and 2 more | 42 Debian Linux, Jackson-databind, Service Level Manager and 39 more | 2025-05-01 | 8.1 High |
FasterXML jackson-databind 2.x before 2.9.10.8 mishandles the interaction between serialization gadgets and typing, related to com.oracle.wls.shaded.org.apache.xalan.lib.sql.JNDIConnectionPool (aka embedded Xalan in org.glassfish.web/javax.servlet.jsp.jstl). | ||||
CVE-2020-36518 | 5 Debian, Fasterxml, Netapp and 2 more | 48 Debian Linux, Jackson-databind, Active Iq Unified Manager and 45 more | 2025-05-01 | 7.5 High |
jackson-databind before 2.13.0 allows a Java StackOverflow exception and denial of service via a large depth of nested objects. | ||||
CVE-2022-24999 | 4 Debian, Openjsf, Qs Project and 1 more | 12 Debian Linux, Express, Qs and 9 more | 2025-04-29 | 7.5 High |
qs before 6.10.3, as used in Express before 4.17.3 and other products, allows attackers to cause a Node process hang for an Express application because an __ proto__ key can be used. In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000. The fix was backported to qs 6.9.7, 6.8.3, 6.7.3, 6.6.1, 6.5.3, 6.4.1, 6.3.3, and 6.2.4 (and therefore Express 4.17.3, which has "deps: qs@6.9.7" in its release description, is not vulnerable). | ||||
CVE-2023-6535 | 2 Linux, Redhat | 19 Linux Kernel, Codeready Linux Builder Eus, Codeready Linux Builder Eus For Power Little Endian Eus and 16 more | 2025-04-24 | 6.5 Medium |
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service. | ||||
CVE-2022-21698 | 4 Fedoraproject, Prometheus, Rdo Project and 1 more | 17 Extra Packages For Enterprise Linux, Fedora, Client Golang and 14 more | 2025-04-23 | 7.5 High |
client_golang is the instrumentation library for Go applications in Prometheus, and the promhttp package in client_golang provides tooling around HTTP servers and clients. In client_golang prior to version 1.11.1, HTTP server is susceptible to a Denial of Service through unbounded cardinality, and potential memory exhaustion, when handling requests with non-standard HTTP methods. In order to be affected, an instrumented software must use any of `promhttp.InstrumentHandler*` middleware except `RequestsInFlight`; not filter any specific methods (e.g GET) before middleware; pass metric with `method` label name to our middleware; and not have any firewall/LB/proxy that filters away requests with unknown `method`. client_golang version 1.11.1 contains a patch for this issue. Several workarounds are available, including removing the `method` label name from counter/gauge used in the InstrumentHandler; turning off affected promhttp handlers; adding custom middleware before promhttp handler that will sanitize the request method given by Go http.Request; and using a reverse proxy or web application firewall, configured to only allow a limited set of methods. | ||||
CVE-2021-35065 | 2 Gulpjs, Redhat | 8 Glob-parent, Enterprise Linux, Logging and 5 more | 2025-04-14 | 7.5 High |
The glob-parent package before 6.0.1 for Node.js allows ReDoS (regular expression denial of service) attacks against the enclosure regular expression. |