Total
8464 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-12441 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-11-13 | 4.3 Medium |
| Out of bounds read in V8 in Google Chrome prior to 142.0.7444.59 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) | ||||
| CVE-2025-12443 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-11-13 | 4.3 Medium |
| Out of bounds read in WebXR in Google Chrome prior to 142.0.7444.59 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) | ||||
| CVE-2024-37005 | 1 Autodesk | 9 Advance Steel, Autocad, Autocad Architecture and 6 more | 2025-11-13 | 7.8 High |
| A maliciously crafted X_B file, when parsed in pskernel.DLL through Autodesk applications, can force an Out-of-Bound Read. A malicious actor can leverage this vulnerability to cause a crash,read sensitive data, or execute arbitrary code in the context of the current process. | ||||
| CVE-2023-53090 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix an illegal memory access In the kfd_wait_on_events() function, the kfd_event_waiter structure is allocated by alloc_event_waiters(), but the event field of the waiter structure is not initialized; When copy_from_user() fails in the kfd_wait_on_events() function, it will enter exception handling to release the previously allocated memory of the waiter structure; Due to the event field of the waiters structure being accessed in the free_waiters() function, this results in illegal memory access and system crash, here is the crash log: localhost kernel: RIP: 0010:native_queued_spin_lock_slowpath+0x185/0x1e0 localhost kernel: RSP: 0018:ffffaa53c362bd60 EFLAGS: 00010082 localhost kernel: RAX: ff3d3d6bff4007cb RBX: 0000000000000282 RCX: 00000000002c0000 localhost kernel: RDX: ffff9e855eeacb80 RSI: 000000000000279c RDI: ffffe7088f6a21d0 localhost kernel: RBP: ffffe7088f6a21d0 R08: 00000000002c0000 R09: ffffaa53c362be64 localhost kernel: R10: ffffaa53c362bbd8 R11: 0000000000000001 R12: 0000000000000002 localhost kernel: R13: ffff9e7ead15d600 R14: 0000000000000000 R15: ffff9e7ead15d698 localhost kernel: FS: 0000152a3d111700(0000) GS:ffff9e855ee80000(0000) knlGS:0000000000000000 localhost kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 localhost kernel: CR2: 0000152938000010 CR3: 000000044d7a4000 CR4: 00000000003506e0 localhost kernel: Call Trace: localhost kernel: _raw_spin_lock_irqsave+0x30/0x40 localhost kernel: remove_wait_queue+0x12/0x50 localhost kernel: kfd_wait_on_events+0x1b6/0x490 [hydcu] localhost kernel: ? ftrace_graph_caller+0xa0/0xa0 localhost kernel: kfd_ioctl+0x38c/0x4a0 [hydcu] localhost kernel: ? kfd_ioctl_set_trap_handler+0x70/0x70 [hydcu] localhost kernel: ? kfd_ioctl_create_queue+0x5a0/0x5a0 [hydcu] localhost kernel: ? ftrace_graph_caller+0xa0/0xa0 localhost kernel: __x64_sys_ioctl+0x8e/0xd0 localhost kernel: ? syscall_trace_enter.isra.18+0x143/0x1b0 localhost kernel: do_syscall_64+0x33/0x80 localhost kernel: entry_SYSCALL_64_after_hwframe+0x44/0xa9 localhost kernel: RIP: 0033:0x152a4dff68d7 Allocate the structure with kcalloc, and remove redundant 0-initialization and a redundant loop condition check. | ||||
| CVE-2023-53057 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: HCI: Fix global-out-of-bounds To loop a variable-length array, hci_init_stage_sync(stage) considers that stage[i] is valid as long as stage[i-1].func is valid. Thus, the last element of stage[].func should be intentionally invalid as hci_init0[], le_init2[], and others did. However, amp_init1[] and amp_init2[] have no invalid element, letting hci_init_stage_sync() keep accessing amp_init1[] over its valid range. This patch fixes this by adding {} in the last of amp_init1[] and amp_init2[]. ================================================================== BUG: KASAN: global-out-of-bounds in hci_dev_open_sync ( /v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) Read of size 8 at addr ffffffffaed1ab70 by task kworker/u5:0/1032 CPU: 0 PID: 1032 Comm: kworker/u5:0 Not tainted 6.2.0 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04 Workqueue: hci1 hci_power_on Call Trace: <TASK> dump_stack_lvl (/v6.2-bzimage/lib/dump_stack.c:107 (discriminator 1)) print_report (/v6.2-bzimage/mm/kasan/report.c:307 /v6.2-bzimage/mm/kasan/report.c:417) ? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) kasan_report (/v6.2-bzimage/mm/kasan/report.c:184 /v6.2-bzimage/mm/kasan/report.c:519) ? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) ? __pfx_hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:4635) ? mutex_lock (/v6.2-bzimage/./arch/x86/include/asm/atomic64_64.h:190 /v6.2-bzimage/./include/linux/atomic/atomic-long.h:443 /v6.2-bzimage/./include/linux/atomic/atomic-instrumented.h:1781 /v6.2-bzimage/kernel/locking/mutex.c:171 /v6.2-bzimage/kernel/locking/mutex.c:285) ? __pfx_mutex_lock (/v6.2-bzimage/kernel/locking/mutex.c:282) hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:485 /v6.2-bzimage/net/bluetooth/hci_core.c:984) ? __pfx_hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:969) ? read_word_at_a_time (/v6.2-bzimage/./include/asm-generic/rwonce.h:85) ? strscpy (/v6.2-bzimage/./arch/x86/include/asm/word-at-a-time.h:62 /v6.2-bzimage/lib/string.c:161) process_one_work (/v6.2-bzimage/kernel/workqueue.c:2294) worker_thread (/v6.2-bzimage/./include/linux/list.h:292 /v6.2-bzimage/kernel/workqueue.c:2437) ? __pfx_worker_thread (/v6.2-bzimage/kernel/workqueue.c:2379) kthread (/v6.2-bzimage/kernel/kthread.c:376) ? __pfx_kthread (/v6.2-bzimage/kernel/kthread.c:331) ret_from_fork (/v6.2-bzimage/arch/x86/entry/entry_64.S:314) </TASK> The buggy address belongs to the variable: amp_init1+0x30/0x60 The buggy address belongs to the physical page: page:000000003a157ec6 refcount:1 mapcount:0 mapping:0000000000000000 ia flags: 0x200000000001000(reserved|node=0|zone=2) raw: 0200000000001000 ffffea0005054688 ffffea0005054688 000000000000000 raw: 0000000000000000 0000000000000000 00000001ffffffff 000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffffffffaed1aa00: f9 f9 f9 f9 00 00 00 00 f9 f9 f9 f9 00 00 00 00 ffffffffaed1aa80: 00 00 00 00 f9 f9 f9 f9 00 00 00 00 00 00 00 00 >ffffffffaed1ab00: 00 f9 f9 f9 f9 f9 f9 f9 00 00 00 00 00 00 f9 f9 ---truncated--- | ||||
| CVE-2025-37879 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-12 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: 9p/net: fix improper handling of bogus negative read/write replies In p9_client_write() and p9_client_read_once(), if the server incorrectly replies with success but a negative write/read count then we would consider written (negative) <= rsize (positive) because both variables were signed. Make variables unsigned to avoid this problem. The reproducer linked below now fails with the following error instead of a null pointer deref: 9pnet: bogus RWRITE count (4294967295 > 3) | ||||
| CVE-2025-61833 | 3 Adobe, Apple, Microsoft | 3 Substance 3d Stager, Macos, Windows | 2025-11-12 | 7.8 High |
| Substance3D - Stager versions 3.1.5 and earlier are affected by an out-of-bounds read vulnerability when parsing a crafted file, which could result in a read past the end of an allocated memory structure. An attacker could leverage this vulnerability to execute code in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | ||||
| CVE-2025-57697 | 1 Astrbot | 1 Astrbot | 2025-11-12 | 6.5 Medium |
| AstrBot Project v3.5.22 has an arbitrary file read vulnerability in function _encode_image_bs64. Since the _encode_image_bs64 function defined in entities.py opens the image specified by the user in the request body and returns the image content as a base64-encoded string without checking the legitimacy of the image path, attackers can construct a series of malicious URLs to read any specified file, resulting in sensitive data leakage. | ||||
| CVE-2025-12829 | 1 Amazon | 1 Ion | 2025-11-12 | 6.2 Medium |
| An uninitialized stack read issue exists in Amazon Ion-C versions <v1.1.4 that may allow a threat actor to craft data and serialize it to Ion text in such a way that sensitive data in memory could be exposed through UTF-8 escape sequences. To mitigate this issue, users should upgrade to version v1.1.4. | ||||
| CVE-2025-46819 | 1 Redis | 1 Redis | 2025-11-12 | 6.3 Medium |
| Redis is an open source, in-memory database that persists on disk. Versions 8.2.1 and below allow an authenticated user to use a specially crafted LUA script to read out-of-bound data or crash the server and subsequent denial of service. The problem exists in all versions of Redis with Lua scripting. This issue is fixed in version 8.2.2. To workaround this issue without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to block a script by restricting both the EVAL and FUNCTION command families. | ||||
| CVE-2022-49883 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will access 16 gprs to 32-bit smram image, causing out-ouf-bound ram access. On 32 bit host, the rsm_load_state_64/enter_smm_save_state_64 is compiled out, thus access overflow can't happen. | ||||
| CVE-2022-49870 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: capabilities: fix undefined behavior in bit shift for CAP_TO_MASK Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in security/commoncap.c:1252:2 left shift of 1 by 31 places cannot be represented in type 'int' Call Trace: <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c cap_task_prctl+0x561/0x6f0 security_task_prctl+0x5a/0xb0 __x64_sys_prctl+0x61/0x8f0 do_syscall_64+0x58/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> | ||||
| CVE-2022-49851 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: riscv: fix reserved memory setup Currently, RISC-V sets up reserved memory using the "early" copy of the device tree. As a result, when trying to get a reserved memory region using of_reserved_mem_lookup(), the pointer to reserved memory regions is using the early, pre-virtual-memory address which causes a kernel panic when trying to use the buffer's name: Unable to handle kernel paging request at virtual address 00000000401c31ac Oops [#1] Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 6.0.0-rc1-00001-g0d9d6953d834 #1 Hardware name: Microchip PolarFire-SoC Icicle Kit (DT) epc : string+0x4a/0xea ra : vsnprintf+0x1e4/0x336 epc : ffffffff80335ea0 ra : ffffffff80338936 sp : ffffffff81203be0 gp : ffffffff812e0a98 tp : ffffffff8120de40 t0 : 0000000000000000 t1 : ffffffff81203e28 t2 : 7265736572203a46 s0 : ffffffff81203c20 s1 : ffffffff81203e28 a0 : ffffffff81203d22 a1 : 0000000000000000 a2 : ffffffff81203d08 a3 : 0000000081203d21 a4 : ffffffffffffffff a5 : 00000000401c31ac a6 : ffff0a00ffffff04 a7 : ffffffffffffffff s2 : ffffffff81203d08 s3 : ffffffff81203d00 s4 : 0000000000000008 s5 : ffffffff000000ff s6 : 0000000000ffffff s7 : 00000000ffffff00 s8 : ffffffff80d9821a s9 : ffffffff81203d22 s10: 0000000000000002 s11: ffffffff80d9821c t3 : ffffffff812f3617 t4 : ffffffff812f3617 t5 : ffffffff812f3618 t6 : ffffffff81203d08 status: 0000000200000100 badaddr: 00000000401c31ac cause: 000000000000000d [<ffffffff80338936>] vsnprintf+0x1e4/0x336 [<ffffffff80055ae2>] vprintk_store+0xf6/0x344 [<ffffffff80055d86>] vprintk_emit+0x56/0x192 [<ffffffff80055ed8>] vprintk_default+0x16/0x1e [<ffffffff800563d2>] vprintk+0x72/0x80 [<ffffffff806813b2>] _printk+0x36/0x50 [<ffffffff8068af48>] print_reserved_mem+0x1c/0x24 [<ffffffff808057ec>] paging_init+0x528/0x5bc [<ffffffff808031ae>] setup_arch+0xd0/0x592 [<ffffffff8080070e>] start_kernel+0x82/0x73c early_init_fdt_scan_reserved_mem() takes no arguments as it operates on initial_boot_params, which is populated by early_init_dt_verify(). On RISC-V, early_init_dt_verify() is called twice. Once, directly, in setup_arch() if CONFIG_BUILTIN_DTB is not enabled and once indirectly, very early in the boot process, by parse_dtb() when it calls early_init_dt_scan_nodes(). This first call uses dtb_early_va to set initial_boot_params, which is not usable later in the boot process when early_init_fdt_scan_reserved_mem() is called. On arm64 for example, the corresponding call to early_init_dt_scan_nodes() uses fixmap addresses and doesn't suffer the same fate. Move early_init_fdt_scan_reserved_mem() further along the boot sequence, after the direct call to early_init_dt_verify() in setup_arch() so that the names use the correct virtual memory addresses. The above supposed that CONFIG_BUILTIN_DTB was not set, but should work equally in the case where it is - unflatted_and_copy_device_tree() also updates initial_boot_params. | ||||
| CVE-2023-53112 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/i915/sseu: fix max_subslices array-index-out-of-bounds access It seems that commit bc3c5e0809ae ("drm/i915/sseu: Don't try to store EU mask internally in UAPI format") exposed a potential out-of-bounds access, reported by UBSAN as following on a laptop with a gen 11 i915 card: UBSAN: array-index-out-of-bounds in drivers/gpu/drm/i915/gt/intel_sseu.c:65:27 index 6 is out of range for type 'u16 [6]' CPU: 2 PID: 165 Comm: systemd-udevd Not tainted 6.2.0-9-generic #9-Ubuntu Hardware name: Dell Inc. XPS 13 9300/077Y9N, BIOS 1.11.0 03/22/2022 Call Trace: <TASK> show_stack+0x4e/0x61 dump_stack_lvl+0x4a/0x6f dump_stack+0x10/0x18 ubsan_epilogue+0x9/0x3a __ubsan_handle_out_of_bounds.cold+0x42/0x47 gen11_compute_sseu_info+0x121/0x130 [i915] intel_sseu_info_init+0x15d/0x2b0 [i915] intel_gt_init_mmio+0x23/0x40 [i915] i915_driver_mmio_probe+0x129/0x400 [i915] ? intel_gt_probe_all+0x91/0x2e0 [i915] i915_driver_probe+0xe1/0x3f0 [i915] ? drm_privacy_screen_get+0x16d/0x190 [drm] ? acpi_dev_found+0x64/0x80 i915_pci_probe+0xac/0x1b0 [i915] ... According to the definition of sseu_dev_info, eu_mask->hsw is limited to a maximum of GEN_MAX_SS_PER_HSW_SLICE (6) sub-slices, but gen11_sseu_info_init() can potentially set 8 sub-slices, in the !IS_JSL_EHL(gt->i915) case. Fix this by reserving up to 8 slots for max_subslices in the eu_mask struct. (cherry picked from commit 3cba09a6ac86ea1d456909626eb2685596c07822) | ||||
| CVE-2023-53117 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: fs: prevent out-of-bounds array speculation when closing a file descriptor Google-Bug-Id: 114199369 | ||||
| CVE-2023-53135 | 1 Linux | 2 Linux, Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: riscv: Use READ_ONCE_NOCHECK in imprecise unwinding stack mode When CONFIG_FRAME_POINTER is unset, the stack unwinding function walk_stackframe randomly reads the stack and then, when KASAN is enabled, it can lead to the following backtrace: [ 0.000000] ================================================================== [ 0.000000] BUG: KASAN: stack-out-of-bounds in walk_stackframe+0xa6/0x11a [ 0.000000] Read of size 8 at addr ffffffff81807c40 by task swapper/0 [ 0.000000] [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.2.0-12919-g24203e6db61f #43 [ 0.000000] Hardware name: riscv-virtio,qemu (DT) [ 0.000000] Call Trace: [ 0.000000] [<ffffffff80007ba8>] walk_stackframe+0x0/0x11a [ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff80c49c80>] dump_stack_lvl+0x22/0x36 [ 0.000000] [<ffffffff80c3783e>] print_report+0x198/0x4a8 [ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff8015f68a>] kasan_report+0x9a/0xc8 [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff8006e99c>] desc_make_final+0x80/0x84 [ 0.000000] [<ffffffff8009a04e>] stack_trace_save+0x88/0xa6 [ 0.000000] [<ffffffff80099fc2>] filter_irq_stacks+0x72/0x76 [ 0.000000] [<ffffffff8006b95e>] devkmsg_read+0x32a/0x32e [ 0.000000] [<ffffffff8015ec16>] kasan_save_stack+0x28/0x52 [ 0.000000] [<ffffffff8006e998>] desc_make_final+0x7c/0x84 [ 0.000000] [<ffffffff8009a04a>] stack_trace_save+0x84/0xa6 [ 0.000000] [<ffffffff8015ec52>] kasan_set_track+0x12/0x20 [ 0.000000] [<ffffffff8015f22e>] __kasan_slab_alloc+0x58/0x5e [ 0.000000] [<ffffffff8015e7ea>] __kmem_cache_create+0x21e/0x39a [ 0.000000] [<ffffffff80e133ac>] create_boot_cache+0x70/0x9c [ 0.000000] [<ffffffff80e17ab2>] kmem_cache_init+0x6c/0x11e [ 0.000000] [<ffffffff80e00fd6>] mm_init+0xd8/0xfe [ 0.000000] [<ffffffff80e011d8>] start_kernel+0x190/0x3ca [ 0.000000] [ 0.000000] The buggy address belongs to stack of task swapper/0 [ 0.000000] and is located at offset 0 in frame: [ 0.000000] stack_trace_save+0x0/0xa6 [ 0.000000] [ 0.000000] This frame has 1 object: [ 0.000000] [32, 56) 'c' [ 0.000000] [ 0.000000] The buggy address belongs to the physical page: [ 0.000000] page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x81a07 [ 0.000000] flags: 0x1000(reserved|zone=0) [ 0.000000] raw: 0000000000001000 ff600003f1e3d150 ff600003f1e3d150 0000000000000000 [ 0.000000] raw: 0000000000000000 0000000000000000 00000001ffffffff [ 0.000000] page dumped because: kasan: bad access detected [ 0.000000] [ 0.000000] Memory state around the buggy address: [ 0.000000] ffffffff81807b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ffffffff81807b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] >ffffffff81807c00: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 f3 [ 0.000000] ^ [ 0.000000] ffffffff81807c80: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ffffffff81807d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ================================================================== Fix that by using READ_ONCE_NOCHECK when reading the stack in imprecise mode. | ||||
| CVE-2023-53136 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: af_unix: fix struct pid leaks in OOB support syzbot reported struct pid leak [1]. Issue is that queue_oob() calls maybe_add_creds() which potentially holds a reference on a pid. But skb->destructor is not set (either directly or by calling unix_scm_to_skb()) This means that subsequent kfree_skb() or consume_skb() would leak this reference. In this fix, I chose to fully support scm even for the OOB message. [1] BUG: memory leak unreferenced object 0xffff8881053e7f80 (size 128): comm "syz-executor242", pid 5066, jiffies 4294946079 (age 13.220s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff812ae26a>] alloc_pid+0x6a/0x560 kernel/pid.c:180 [<ffffffff812718df>] copy_process+0x169f/0x26c0 kernel/fork.c:2285 [<ffffffff81272b37>] kernel_clone+0xf7/0x610 kernel/fork.c:2684 [<ffffffff812730cc>] __do_sys_clone+0x7c/0xb0 kernel/fork.c:2825 [<ffffffff849ad699>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff849ad699>] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 [<ffffffff84a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd | ||||
| CVE-2020-36791 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: net_sched: keep alloc_hash updated after hash allocation In commit 599be01ee567 ("net_sched: fix an OOB access in cls_tcindex") I moved cp->hash calculation before the first tcindex_alloc_perfect_hash(), but cp->alloc_hash is left untouched. This difference could lead to another out of bound access. cp->alloc_hash should always be the size allocated, we should update it after this tcindex_alloc_perfect_hash(). | ||||
| CVE-2025-37825 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: nvmet: fix out-of-bounds access in nvmet_enable_port When trying to enable a port that has no transport configured yet, nvmet_enable_port() uses NVMF_TRTYPE_MAX (255) to query the transports array, causing an out-of-bounds access: [ 106.058694] BUG: KASAN: global-out-of-bounds in nvmet_enable_port+0x42/0x1da [ 106.058719] Read of size 8 at addr ffffffff89dafa58 by task ln/632 [...] [ 106.076026] nvmet: transport type 255 not supported Since commit 200adac75888, NVMF_TRTYPE_MAX is the default state as configured by nvmet_ports_make(). Avoid this by checking for NVMF_TRTYPE_MAX before proceeding. | ||||
| CVE-2025-50163 | 1 Microsoft | 10 Windows Server, Windows Server 2008, Windows Server 2008 R2 and 7 more | 2025-11-10 | 8.8 High |
| Heap-based buffer overflow in Windows Routing and Remote Access Service (RRAS) allows an unauthorized attacker to execute code over a network. | ||||