Filtered by vendor Openssl
Subscriptions
Filtered by product Openssl
Subscriptions
Total
279 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2016-2108 | 3 Google, Openssl, Redhat | 13 Android, Openssl, Enterprise Linux and 10 more | 2025-04-12 | N/A |
| The ASN.1 implementation in OpenSSL before 1.0.1o and 1.0.2 before 1.0.2c allows remote attackers to execute arbitrary code or cause a denial of service (buffer underflow and memory corruption) via an ANY field in crafted serialized data, aka the "negative zero" issue. | ||||
| CVE-2016-2109 | 2 Openssl, Redhat | 12 Openssl, Enterprise Linux, Enterprise Linux Desktop and 9 more | 2025-04-12 | N/A |
| The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in the ASN.1 BIO implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (memory consumption) via a short invalid encoding. | ||||
| CVE-2016-2178 | 7 Canonical, Debian, Nodejs and 4 more | 10 Ubuntu Linux, Debian Linux, Node.js and 7 more | 2025-04-12 | 5.5 Medium |
| The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack. | ||||
| CVE-2016-2183 | 6 Cisco, Nodejs, Openssl and 3 more | 14 Content Security Management Appliance, Node.js, Openssl and 11 more | 2025-04-12 | 7.5 High |
| The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack. | ||||
| CVE-2016-6303 | 2 Nodejs, Openssl | 2 Node.js, Openssl | 2025-04-12 | 9.8 Critical |
| Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. | ||||
| CVE-2016-6304 | 4 Nodejs, Novell, Openssl and 1 more | 11 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl and 8 more | 2025-04-12 | 7.5 High |
| Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions. | ||||
| CVE-2015-3195 | 9 Apple, Canonical, Debian and 6 more | 28 Mac Os X, Ubuntu Linux, Debian Linux and 25 more | 2025-04-12 | 5.3 Medium |
| The ASN1_TFLG_COMBINE implementation in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zh, 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1q, and 1.0.2 before 1.0.2e mishandles errors caused by malformed X509_ATTRIBUTE data, which allows remote attackers to obtain sensitive information from process memory by triggering a decoding failure in a PKCS#7 or CMS application. | ||||
| CVE-2016-2107 | 8 Canonical, Debian, Google and 5 more | 18 Ubuntu Linux, Debian Linux, Android and 15 more | 2025-04-12 | 5.9 Medium |
| The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169. | ||||
| CVE-2011-1473 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| OpenSSL before 0.9.8l, and 0.9.8m through 1.x, does not properly restrict client-initiated renegotiation within the SSL and TLS protocols, which might make it easier for remote attackers to cause a denial of service (CPU consumption) by performing many renegotiations within a single connection, a different vulnerability than CVE-2011-5094. NOTE: it can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment | ||||
| CVE-2011-4109 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 1 more | 2025-04-11 | N/A |
| Double free vulnerability in OpenSSL 0.9.8 before 0.9.8s, when X509_V_FLAG_POLICY_CHECK is enabled, allows remote attackers to have an unspecified impact by triggering failure of a policy check. | ||||
| CVE-2011-4576 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 1 more | 2025-04-11 | N/A |
| The SSL 3.0 implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f does not properly initialize data structures for block cipher padding, which might allow remote attackers to obtain sensitive information by decrypting the padding data sent by an SSL peer. | ||||
| CVE-2011-4619 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 1 more | 2025-04-11 | N/A |
| The Server Gated Cryptography (SGC) implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f does not properly handle handshake restarts, which allows remote attackers to cause a denial of service (CPU consumption) via unspecified vectors. | ||||
| CVE-2012-2110 | 2 Openssl, Redhat | 8 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 5 more | 2025-04-11 | N/A |
| The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in OpenSSL before 0.9.8v, 1.0.0 before 1.0.0i, and 1.0.1 before 1.0.1a does not properly interpret integer data, which allows remote attackers to conduct buffer overflow attacks, and cause a denial of service (memory corruption) or possibly have unspecified other impact, via crafted DER data, as demonstrated by an X.509 certificate or an RSA public key. | ||||
| CVE-2012-2333 | 2 Openssl, Redhat | 5 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 2 more | 2025-04-11 | N/A |
| Integer underflow in OpenSSL before 0.9.8x, 1.0.0 before 1.0.0j, and 1.0.1 before 1.0.1c, when TLS 1.1, TLS 1.2, or DTLS is used with CBC encryption, allows remote attackers to cause a denial of service (buffer over-read) or possibly have unspecified other impact via a crafted TLS packet that is not properly handled during a certain explicit IV calculation. | ||||
| CVE-2013-0166 | 2 Openssl, Redhat | 6 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 3 more | 2025-04-11 | N/A |
| OpenSSL before 0.9.8y, 1.0.0 before 1.0.0k, and 1.0.1 before 1.0.1d does not properly perform signature verification for OCSP responses, which allows remote OCSP servers to cause a denial of service (NULL pointer dereference and application crash) via an invalid key. | ||||
| CVE-2013-6450 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| The DTLS retransmission implementation in OpenSSL 1.0.0 before 1.0.0l and 1.0.1 before 1.0.1f does not properly maintain data structures for digest and encryption contexts, which might allow man-in-the-middle attackers to trigger the use of a different context and cause a denial of service (application crash) by interfering with packet delivery, related to ssl/d1_both.c and ssl/t1_enc.c. | ||||
| CVE-2011-3207 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| crypto/x509/x509_vfy.c in OpenSSL 1.0.x before 1.0.0e does not initialize certain structure members, which makes it easier for remote attackers to bypass CRL validation by using a nextUpdate value corresponding to a time in the past. | ||||
| CVE-2011-0014 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| ssl/t1_lib.c in OpenSSL 0.9.8h through 0.9.8q and 1.0.0 through 1.0.0c allows remote attackers to cause a denial of service (crash), and possibly obtain sensitive information in applications that use OpenSSL, via a malformed ClientHello handshake message that triggers an out-of-bounds memory access, aka "OCSP stapling vulnerability." | ||||
| CVE-2013-6449 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| The ssl_get_algorithm2 function in ssl/s3_lib.c in OpenSSL before 1.0.2 obtains a certain version number from an incorrect data structure, which allows remote attackers to cause a denial of service (daemon crash) via crafted traffic from a TLS 1.2 client. | ||||
| CVE-2010-3864 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| Multiple race conditions in ssl/t1_lib.c in OpenSSL 0.9.8f through 0.9.8o, 1.0.0, and 1.0.0a, when multi-threading and internal caching are enabled on a TLS server, might allow remote attackers to execute arbitrary code via client data that triggers a heap-based buffer overflow, related to (1) the TLS server name extension and (2) elliptic curve cryptography. | ||||