Filtered by vendor Linux Subscriptions
Total 16781 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2026-23005 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1 When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in response to a guest WRMSR, clear XFD-disabled features in the saved (or to be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for features that are disabled via the guest's XFD. Because the kernel executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1 will cause XRSTOR to #NM and panic the kernel. E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848 Modules linked in: kvm_intel kvm irqbypass CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 switch_fpu_return+0x4a/0xb0 kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1, and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's call to fpu_update_guest_xfd(). and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867 Modules linked in: kvm_intel kvm irqbypass CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 fpu_swap_kvm_fpstate+0x6b/0x120 kvm_load_guest_fpu+0x30/0x80 [kvm] kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- The new behavior is consistent with the AMX architecture. Per Intel's SDM, XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD (and non-compacted XSAVE saves the initial configuration of the state component): If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it operates as if XINUSE[i] = 0 (and the state component was in its initial state): it saves bit i of XSTATE_BV field of the XSAVE header as 0; in addition, XSAVE saves the initial configuration of the state component (the other instructions do not save state component i). Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using a constant XFD based on the set of enabled features when XSAVEing for a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled features can only happen in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, because fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the outgoing FPU state with the current XFD; and that is (on all but the first WRMSR to XFD) the guest XFD. Therefore, XFD can only go out of sync with XSTATE_BV in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, and it we can consider it (de facto) part of KVM ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features. [Move clea ---truncated---
CVE-2026-23006 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: ASoC: tlv320adcx140: fix null pointer The "snd_soc_component" in "adcx140_priv" was only used once but never set. It was only used for reaching "dev" which is already present in "adcx140_priv".
CVE-2026-23008 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix KMS with 3D on HW version 10 HW version 10 does not have GB Surfaces so there is no backing buffer for surface backed FBs. This would result in a nullptr dereference and crash the driver causing a black screen.
CVE-2026-23010 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix use-after-free in inet6_addr_del(). syzbot reported use-after-free of inet6_ifaddr in inet6_addr_del(). [0] The cited commit accidentally moved ipv6_del_addr() for mngtmpaddr before reading its ifp->flags for temporary addresses in inet6_addr_del(). Let's move ipv6_del_addr() down to fix the UAF. [0]: BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593 CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181 inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f164cf8f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749 RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003 RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288 </TASK> Allocated by task 9593: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120 inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050 addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160 inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6099: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2540 [inline] slab_free_freelist_hook mm/slub.c:2569 [inline] slab_free_bulk mm/slub.c:6696 [inline] kmem_cache_free_bulk mm/slub.c:7383 [inline] kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362 kfree_bulk include/linux/slab.h:830 [inline] kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523 kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline] kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801 process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257 process_scheduled_works kernel/workqu ---truncated---
CVE-2026-22997 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is called only when the timer is enabled, we need to call j1939_session_deactivate_activate_next() if we cancelled the timer. Otherwise, refcount for j1939_session leaks, which will later appear as | unregister_netdevice: waiting for vcan0 to become free. Usage count = 2. problem.
CVE-2026-23013 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to ioq_vector. If request_irq() fails part-way, the rollback loop calls free_irq() with dev_id set to 'oct', which does not match the original dev_id and may leave the irqaction registered. This can keep IRQ handlers alive while ioq_vector is later freed during unwind/teardown, leading to a use-after-free or crash when an interrupt fires. Fix the error path to free IRQs with the same ioq_vector dev_id used during request_irq().
CVE-2026-22986 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gpiolib: fix race condition for gdev->srcu If two drivers were calling gpiochip_add_data_with_key(), one may be traversing the srcu-protected list in gpio_name_to_desc(), meanwhile other has just added its gdev in gpiodev_add_to_list_unlocked(). This creates a non-mutexed and non-protected timeframe, when one instance is dereferencing and using &gdev->srcu, before the other has initialized it, resulting in crash: [ 4.935481] Unable to handle kernel paging request at virtual address ffff800272bcc000 [ 4.943396] Mem abort info: [ 4.943400] ESR = 0x0000000096000005 [ 4.943403] EC = 0x25: DABT (current EL), IL = 32 bits [ 4.943407] SET = 0, FnV = 0 [ 4.943410] EA = 0, S1PTW = 0 [ 4.943413] FSC = 0x05: level 1 translation fault [ 4.943416] Data abort info: [ 4.943418] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 4.946220] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 4.955261] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 4.955268] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000038e6c000 [ 4.961449] [ffff800272bcc000] pgd=0000000000000000 [ 4.969203] , p4d=1000000039739003 [ 4.979730] , pud=0000000000000000 [ 4.980210] phandle (CPU): 0x0000005e, phandle (BE): 0x5e000000 for node "reset" [ 4.991736] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP ... [ 5.121359] pc : __srcu_read_lock+0x44/0x98 [ 5.131091] lr : gpio_name_to_desc+0x60/0x1a0 [ 5.153671] sp : ffff8000833bb430 [ 5.298440] [ 5.298443] Call trace: [ 5.298445] __srcu_read_lock+0x44/0x98 [ 5.309484] gpio_name_to_desc+0x60/0x1a0 [ 5.320692] gpiochip_add_data_with_key+0x488/0xf00 5.946419] ---[ end trace 0000000000000000 ]--- Move initialization code for gdev fields before it is added to gpio_devices, with adjacent initialization code. Adjust goto statements to reflect modified order of operations [Bartosz: fixed a build issue, removed stray newline]
CVE-2026-22991 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: make free_choose_arg_map() resilient to partial allocation free_choose_arg_map() may dereference a NULL pointer if its caller fails after a partial allocation. For example, in decode_choose_args(), if allocation of arg_map->args fails, execution jumps to the fail label and free_choose_arg_map() is called. Since arg_map->size is updated to a non-zero value before memory allocation, free_choose_arg_map() will iterate over arg_map->args and dereference a NULL pointer. To prevent this potential NULL pointer dereference and make free_choose_arg_map() more resilient, add checks for pointers before iterating.
CVE-2026-22992 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: return the handler error from mon_handle_auth_done() Currently any error from ceph_auth_handle_reply_done() is propagated via finish_auth() but isn't returned from mon_handle_auth_done(). This results in higher layers learning that (despite the monitor considering us to be successfully authenticated) something went wrong in the authentication phase and reacting accordingly, but msgr2 still trying to proceed with establishing the session in the background. In the case of secure mode this can trigger a WARN in setup_crypto() and later lead to a NULL pointer dereference inside of prepare_auth_signature().
CVE-2026-22993 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: Fix RSS LUT NULL ptr issue after soft reset During soft reset, the RSS LUT is freed and not restored unless the interface is up. If an ethtool command that accesses the rss lut is attempted immediately after reset, it will result in NULL ptr dereference. Also, there is no need to reset the rss lut if the soft reset does not involve queue count change. After soft reset, set the RSS LUT to default values based on the updated queue count only if the reset was a result of a queue count change and the LUT was not configured by the user. In all other cases, don't touch the LUT. Steps to reproduce: ** Bring the interface down (if up) ifconfig eth1 down ** update the queue count (eg., 27->20) ethtool -L eth1 combined 20 ** display the RSS LUT ethtool -x eth1 [82375.558338] BUG: kernel NULL pointer dereference, address: 0000000000000000 [82375.558373] #PF: supervisor read access in kernel mode [82375.558391] #PF: error_code(0x0000) - not-present page [82375.558408] PGD 0 P4D 0 [82375.558421] Oops: Oops: 0000 [#1] SMP NOPTI <snip> [82375.558516] RIP: 0010:idpf_get_rxfh+0x108/0x150 [idpf] [82375.558786] Call Trace: [82375.558793] <TASK> [82375.558804] rss_prepare.isra.0+0x187/0x2a0 [82375.558827] rss_prepare_data+0x3a/0x50 [82375.558845] ethnl_default_doit+0x13d/0x3e0 [82375.558863] genl_family_rcv_msg_doit+0x11f/0x180 [82375.558886] genl_rcv_msg+0x1ad/0x2b0 [82375.558902] ? __pfx_ethnl_default_doit+0x10/0x10 [82375.558920] ? __pfx_genl_rcv_msg+0x10/0x10 [82375.558937] netlink_rcv_skb+0x58/0x100 [82375.558957] genl_rcv+0x2c/0x50 [82375.558971] netlink_unicast+0x289/0x3e0 [82375.558988] netlink_sendmsg+0x215/0x440 [82375.559005] __sys_sendto+0x234/0x240 [82375.559555] __x64_sys_sendto+0x28/0x30 [82375.560068] x64_sys_call+0x1909/0x1da0 [82375.560576] do_syscall_64+0x7a/0xfa0 [82375.561076] ? clear_bhb_loop+0x60/0xb0 [82375.561567] entry_SYSCALL_64_after_hwframe+0x76/0x7e <snip>
CVE-2026-22994 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reference count leak in bpf_prog_test_run_xdp() syzbot is reporting unregister_netdevice: waiting for sit0 to become free. Usage count = 2 problem. A debug printk() patch found that a refcount is obtained at xdp_convert_md_to_buff() from bpf_prog_test_run_xdp(). According to commit ec94670fcb3b ("bpf: Support specifying ingress via xdp_md context in BPF_PROG_TEST_RUN"), the refcount obtained by xdp_convert_md_to_buff() will be released by xdp_convert_buff_to_md(). Therefore, we can consider that the error handling path introduced by commit 1c1949982524 ("bpf: introduce frags support to bpf_prog_test_run_xdp()") forgot to call xdp_convert_buff_to_md().
CVE-2026-22987 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_api: avoid dereferencing ERR_PTR in tcf_idrinfo_destroy syzbot reported a crash in tc_act_in_hw() during netns teardown where tcf_idrinfo_destroy() passed an ERR_PTR(-EBUSY) value as a tc_action pointer, leading to an invalid dereference. Guard against ERR_PTR entries when iterating the action IDR so teardown does not call tc_act_in_hw() on an error pointer.
CVE-2026-22999 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: do not free existing class in qfq_change_class() Fixes qfq_change_class() error case. cl->qdisc and cl should only be freed if a new class and qdisc were allocated, or we risk various UAF.
CVE-2025-39945 1 Linux 1 Linux Kernel 2026-01-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cnic: Fix use-after-free bugs in cnic_delete_task The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(), which does not guarantee that the delayed work item 'delete_task' has fully completed if it was already running. Additionally, the delayed work item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after the cyclic work items have finished executing, a delayed work item may still exist in the workqueue. This leads to use-after-free scenarios where the cnic_dev is deallocated by cnic_free_dev(), while delete_task remains active and attempt to dereference cnic_dev in cnic_delete_task(). A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) cnic_netdev_event() | cnic_stop_hw() | cnic_delete_task() cnic_cm_stop_bnx2x_hw() | ... cancel_delayed_work() | /* the queue_delayed_work() flush_workqueue() | executes after flush_workqueue()*/ | queue_delayed_work() cnic_free_dev(dev)//free | cnic_delete_task() //new instance | dev = cp->dev; //use Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure that the cyclic delayed work item is properly canceled and that any ongoing execution of the work item completes before the cnic_dev is deallocated. Furthermore, since cancel_delayed_work_sync() uses __flush_work(work, true) to synchronously wait for any currently executing instance of the work item to finish, the flush_workqueue() becomes redundant and should be removed. This bug was identified through static analysis. To reproduce the issue and validate the fix, I simulated the cnic PCI device in QEMU and introduced intentional delays — such as inserting calls to ssleep() within the cnic_delete_task() function — to increase the likelihood of triggering the bug.
CVE-2022-50494 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: intel_powerclamp: Use get_cpu() instead of smp_processor_id() to avoid crash When CPU 0 is offline and intel_powerclamp is used to inject idle, it generates kernel BUG: BUG: using smp_processor_id() in preemptible [00000000] code: bash/15687 caller is debug_smp_processor_id+0x17/0x20 CPU: 4 PID: 15687 Comm: bash Not tainted 5.19.0-rc7+ #57 Call Trace: <TASK> dump_stack_lvl+0x49/0x63 dump_stack+0x10/0x16 check_preemption_disabled+0xdd/0xe0 debug_smp_processor_id+0x17/0x20 powerclamp_set_cur_state+0x7f/0xf9 [intel_powerclamp] ... ... Here CPU 0 is the control CPU by default and changed to the current CPU, if CPU 0 offlined. This check has to be performed under cpus_read_lock(), hence the above warning. Use get_cpu() instead of smp_processor_id() to avoid this BUG. [ rjw: Subject edits ]
CVE-2022-50493 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix crash when I/O abort times out While performing CPU hotplug, a crash with the following stack was seen: Call Trace: qla24xx_process_response_queue+0x42a/0x970 [qla2xxx] qla2x00_start_nvme_mq+0x3a2/0x4b0 [qla2xxx] qla_nvme_post_cmd+0x166/0x240 [qla2xxx] nvme_fc_start_fcp_op.part.0+0x119/0x2e0 [nvme_fc] blk_mq_dispatch_rq_list+0x17b/0x610 __blk_mq_sched_dispatch_requests+0xb0/0x140 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x35/0x90 __blk_mq_delay_run_hw_queue+0x161/0x180 blk_execute_rq+0xbe/0x160 __nvme_submit_sync_cmd+0x16f/0x220 [nvme_core] nvmf_connect_admin_queue+0x11a/0x170 [nvme_fabrics] nvme_fc_create_association.cold+0x50/0x3dc [nvme_fc] nvme_fc_connect_ctrl_work+0x19/0x30 [nvme_fc] process_one_work+0x1e8/0x3c0 On abort timeout, completion was called without checking if the I/O was already completed. Verify that I/O and abort request are indeed outstanding before attempting completion.
CVE-2022-50492 1 Linux 1 Linux Kernel 2026-01-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix use-after-free on probe deferral The bridge counter was never reset when tearing down the DRM device so that stale pointers to deallocated structures would be accessed on the next tear down (e.g. after a second late bind deferral). Given enough bridges and a few probe deferrals this could currently also lead to data beyond the bridge array being corrupted. Patchwork: https://patchwork.freedesktop.org/patch/502665/
CVE-2023-53531 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: null_blk: fix poll request timeout handling When doing io_uring benchmark on /dev/nullb0, it's easy to crash the kernel if poll requests timeout triggered, as reported by David. [1] BUG: kernel NULL pointer dereference, address: 0000000000000008 Workqueue: kblockd blk_mq_timeout_work RIP: 0010:null_timeout_rq+0x4e/0x91 Call Trace: ? null_timeout_rq+0x4e/0x91 blk_mq_handle_expired+0x31/0x4b bt_iter+0x68/0x84 ? bt_tags_iter+0x81/0x81 __sbitmap_for_each_set.constprop.0+0xb0/0xf2 ? __blk_mq_complete_request_remote+0xf/0xf bt_for_each+0x46/0x64 ? __blk_mq_complete_request_remote+0xf/0xf ? percpu_ref_get_many+0xc/0x2a blk_mq_queue_tag_busy_iter+0x14d/0x18e blk_mq_timeout_work+0x95/0x127 process_one_work+0x185/0x263 worker_thread+0x1b5/0x227 This is indeed a race problem between null_timeout_rq() and null_poll(). null_poll() null_timeout_rq() spin_lock(&nq->poll_lock) list_splice_init(&nq->poll_list, &list) spin_unlock(&nq->poll_lock) while (!list_empty(&list)) req = list_first_entry() list_del_init() ... blk_mq_add_to_batch() // req->rq_next = NULL spin_lock(&nq->poll_lock) // rq->queuelist->next == NULL list_del_init(&rq->queuelist) spin_unlock(&nq->poll_lock) Fix these problems by setting requests state to MQ_RQ_COMPLETE under nq->poll_lock protection, in which null_timeout_rq() can safely detect this race and early return. Note this patch just fix the kernel panic when request timeout happen. [1] https://lore.kernel.org/all/3893581.1691785261@warthog.procyon.org.uk/
CVE-2025-39941 1 Linux 1 Linux Kernel 2026-01-23 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: zram: fix slot write race condition Parallel concurrent writes to the same zram index result in leaked zsmalloc handles. Schematically we can have something like this: CPU0 CPU1 zram_slot_lock() zs_free(handle) zram_slot_lock() zram_slot_lock() zs_free(handle) zram_slot_lock() compress compress handle = zs_malloc() handle = zs_malloc() zram_slot_lock zram_set_handle(handle) zram_slot_lock zram_slot_lock zram_set_handle(handle) zram_slot_lock Either CPU0 or CPU1 zsmalloc handle will leak because zs_free() is done too early. In fact, we need to reset zram entry right before we set its new handle, all under the same slot lock scope.
CVE-2025-39940 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm-stripe: fix a possible integer overflow There's a possible integer overflow in stripe_io_hints if we have too large chunk size. Test if the overflow happened, and if it did, don't set limits->io_min and limits->io_opt;