Filtered by NVD-CWE-noinfo
Total 34346 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-38698 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jfs: Regular file corruption check The reproducer builds a corrupted file on disk with a negative i_size value. Add a check when opening this file to avoid subsequent operation failures.
CVE-2025-38279 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Do not include stack ptr register in precision backtracking bookkeeping Yi Lai reported an issue ([1]) where the following warning appears in kernel dmesg: [ 60.643604] verifier backtracking bug [ 60.643635] WARNING: CPU: 10 PID: 2315 at kernel/bpf/verifier.c:4302 __mark_chain_precision+0x3a6c/0x3e10 [ 60.648428] Modules linked in: bpf_testmod(OE) [ 60.650471] CPU: 10 UID: 0 PID: 2315 Comm: test_progs Tainted: G OE 6.15.0-rc4-gef11287f8289-dirty #327 PREEMPT(full) [ 60.654385] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE [ 60.656682] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 60.660475] RIP: 0010:__mark_chain_precision+0x3a6c/0x3e10 [ 60.662814] Code: 5a 30 84 89 ea e8 c4 d9 01 00 80 3d 3e 7d d8 04 00 0f 85 60 fa ff ff c6 05 31 7d d8 04 01 48 c7 c7 00 58 30 84 e8 c4 06 a5 ff <0f> 0b e9 46 fa ff ff 48 ... [ 60.668720] RSP: 0018:ffff888116cc7298 EFLAGS: 00010246 [ 60.671075] RAX: 54d70e82dfd31900 RBX: ffff888115b65e20 RCX: 0000000000000000 [ 60.673659] RDX: 0000000000000001 RSI: 0000000000000004 RDI: 00000000ffffffff [ 60.676241] RBP: 0000000000000400 R08: ffff8881f6f23bd3 R09: 1ffff1103ede477a [ 60.678787] R10: dffffc0000000000 R11: ffffed103ede477b R12: ffff888115b60ae8 [ 60.681420] R13: 1ffff11022b6cbc4 R14: 00000000fffffff2 R15: 0000000000000001 [ 60.684030] FS: 00007fc2aedd80c0(0000) GS:ffff88826fa8a000(0000) knlGS:0000000000000000 [ 60.686837] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 60.689027] CR2: 000056325369e000 CR3: 000000011088b002 CR4: 0000000000370ef0 [ 60.691623] Call Trace: [ 60.692821] <TASK> [ 60.693960] ? __pfx_verbose+0x10/0x10 [ 60.695656] ? __pfx_disasm_kfunc_name+0x10/0x10 [ 60.697495] check_cond_jmp_op+0x16f7/0x39b0 [ 60.699237] do_check+0x58fa/0xab10 ... Further analysis shows the warning is at line 4302 as below: 4294 /* static subprog call instruction, which 4295 * means that we are exiting current subprog, 4296 * so only r1-r5 could be still requested as 4297 * precise, r0 and r6-r10 or any stack slot in 4298 * the current frame should be zero by now 4299 */ 4300 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4301 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4302 WARN_ONCE(1, "verifier backtracking bug"); 4303 return -EFAULT; 4304 } With the below test (also in the next patch): __used __naked static void __bpf_jmp_r10(void) { asm volatile ( "r2 = 2314885393468386424 ll;" "goto +0;" "if r2 <= r10 goto +3;" "if r1 >= -1835016 goto +0;" "if r2 <= 8 goto +0;" "if r3 <= 0 goto +0;" "exit;" ::: __clobber_all); } SEC("?raw_tp") __naked void bpf_jmp_r10(void) { asm volatile ( "r3 = 0 ll;" "call __bpf_jmp_r10;" "r0 = 0;" "exit;" ::: __clobber_all); } The following is the verifier failure log: 0: (18) r3 = 0x0 ; R3_w=0 2: (85) call pc+2 caller: R10=fp0 callee: frame1: R1=ctx() R3_w=0 R10=fp0 5: frame1: R1=ctx() R3_w=0 R10=fp0 ; asm volatile (" \ @ verifier_precision.c:184 5: (18) r2 = 0x20202000256c6c78 ; frame1: R2_w=0x20202000256c6c78 7: (05) goto pc+0 8: (bd) if r2 <= r10 goto pc+3 ; frame1: R2_w=0x20202000256c6c78 R10=fp0 9: (35) if r1 >= 0xffe3fff8 goto pc+0 ; frame1: R1=ctx() 10: (b5) if r2 <= 0x8 goto pc+0 mark_precise: frame1: last_idx 10 first_idx 0 subseq_idx -1 mark_precise: frame1: regs=r2 stack= before 9: (35) if r1 >= 0xffe3fff8 goto pc+0 mark_precise: frame1: regs=r2 stack= before 8: (bd) if r2 <= r10 goto pc+3 mark_preci ---truncated---
CVE-2025-38494 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: do not bypass hid_hw_raw_request hid_hw_raw_request() is actually useful to ensure the provided buffer and length are valid. Directly calling in the low level transport driver function bypassed those checks and allowed invalid paramto be used.
CVE-2023-53517 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tipc: do not update mtu if msg_max is too small in mtu negotiation When doing link mtu negotiation, a malicious peer may send Activate msg with a very small mtu, e.g. 4 in Shuang's testing, without checking for the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then n->links[bearer_id].mtu is set to 4294967228, which is a overflow of '4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss(). With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning: tipc: Too large msg, purging xmit list 1 5 0 40 4! tipc: Too large msg, purging xmit list 1 15 0 60 4! And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in named_distribute(), and when purging it in tipc_link_xmit(), a crash was even caused: general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19 RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0 Call Trace: <IRQ> skb_release_data+0xf9/0x1d0 kfree_skb_reason+0x40/0x100 tipc_link_xmit+0x57a/0x740 [tipc] tipc_node_xmit+0x16c/0x5c0 [tipc] tipc_named_node_up+0x27f/0x2c0 [tipc] tipc_node_write_unlock+0x149/0x170 [tipc] tipc_rcv+0x608/0x740 [tipc] tipc_udp_recv+0xdc/0x1f0 [tipc] udp_queue_rcv_one_skb+0x33e/0x620 udp_unicast_rcv_skb.isra.72+0x75/0x90 __udp4_lib_rcv+0x56d/0xc20 ip_protocol_deliver_rcu+0x100/0x2d0 This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(), and not updating mtu if it is too small.
CVE-2023-53522 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex syzbot is reporting circular locking dependency between cpu_hotplug_lock and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core freezer logic") replaced atomic_inc() in freezer_apply_state() with static_branch_inc() which holds cpu_hotplug_lock. cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex cgroup_file_write() { cgroup_procs_write() { __cgroup_procs_write() { cgroup_procs_write_start() { cgroup_attach_lock() { cpus_read_lock() { percpu_down_read(&cpu_hotplug_lock); } percpu_down_write(&cgroup_threadgroup_rwsem); } } cgroup_attach_task() { cgroup_migrate() { cgroup_migrate_execute() { freezer_attach() { mutex_lock(&freezer_mutex); (...snipped...) } } } } (...snipped...) } } } freezer_mutex => cpu_hotplug_lock cgroup_file_write() { freezer_write() { freezer_change_state() { mutex_lock(&freezer_mutex); freezer_apply_state() { static_branch_inc(&freezer_active) { static_key_slow_inc() { cpus_read_lock(); static_key_slow_inc_cpuslocked(); cpus_read_unlock(); } } } mutex_unlock(&freezer_mutex); } } } Swap locking order by moving cpus_read_lock() in freezer_apply_state() to before mutex_lock(&freezer_mutex) in freezer_change_state().
CVE-2025-49200 1 Sick 1 Field Analytics 2026-01-26 6.5 Medium
The created backup files are unencrypted, making the application vulnerable for gathering sensitive information by downloading and decompressing the backup files.
CVE-2025-39202 1 Hitachienergy 1 Microscada X Sys600 2026-01-26 7.3 High
A vulnerability exists in in the Monitor Pro interface of the MicroSCADA X SYS600 product. An authenticated user with low privileges can see and overwrite files causing information leak and data corruption.
CVE-2025-39204 1 Hitachienergy 1 Microscada X Sys600 2026-01-26 6.5 Medium
A vulnerability exists in the Web interface of the MicroSCADA X SYS600 product. The filtering query in the Web interface can be malformed, so returning data can leak unauthorized information to the user.
CVE-2022-50494 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: intel_powerclamp: Use get_cpu() instead of smp_processor_id() to avoid crash When CPU 0 is offline and intel_powerclamp is used to inject idle, it generates kernel BUG: BUG: using smp_processor_id() in preemptible [00000000] code: bash/15687 caller is debug_smp_processor_id+0x17/0x20 CPU: 4 PID: 15687 Comm: bash Not tainted 5.19.0-rc7+ #57 Call Trace: <TASK> dump_stack_lvl+0x49/0x63 dump_stack+0x10/0x16 check_preemption_disabled+0xdd/0xe0 debug_smp_processor_id+0x17/0x20 powerclamp_set_cur_state+0x7f/0xf9 [intel_powerclamp] ... ... Here CPU 0 is the control CPU by default and changed to the current CPU, if CPU 0 offlined. This check has to be performed under cpus_read_lock(), hence the above warning. Use get_cpu() instead of smp_processor_id() to avoid this BUG. [ rjw: Subject edits ]
CVE-2022-50493 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix crash when I/O abort times out While performing CPU hotplug, a crash with the following stack was seen: Call Trace: qla24xx_process_response_queue+0x42a/0x970 [qla2xxx] qla2x00_start_nvme_mq+0x3a2/0x4b0 [qla2xxx] qla_nvme_post_cmd+0x166/0x240 [qla2xxx] nvme_fc_start_fcp_op.part.0+0x119/0x2e0 [nvme_fc] blk_mq_dispatch_rq_list+0x17b/0x610 __blk_mq_sched_dispatch_requests+0xb0/0x140 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x35/0x90 __blk_mq_delay_run_hw_queue+0x161/0x180 blk_execute_rq+0xbe/0x160 __nvme_submit_sync_cmd+0x16f/0x220 [nvme_core] nvmf_connect_admin_queue+0x11a/0x170 [nvme_fabrics] nvme_fc_create_association.cold+0x50/0x3dc [nvme_fc] nvme_fc_connect_ctrl_work+0x19/0x30 [nvme_fc] process_one_work+0x1e8/0x3c0 On abort timeout, completion was called without checking if the I/O was already completed. Verify that I/O and abort request are indeed outstanding before attempting completion.
CVE-2022-50483 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: enetc: avoid buffer leaks on xdp_do_redirect() failure Before enetc_clean_rx_ring_xdp() calls xdp_do_redirect(), each software BD in the RX ring between index orig_i and i can have one of 2 refcount values on its page. We are the owner of the current buffer that is being processed, so the refcount will be at least 1. If the current owner of the buffer at the diametrically opposed index in the RX ring (i.o.w, the other half of this page) has not yet called kfree(), this page's refcount could even be 2. enetc_page_reusable() in enetc_flip_rx_buff() tests for the page refcount against 1, and [ if it's 2 ] does not attempt to reuse it. But if enetc_flip_rx_buff() is put after the xdp_do_redirect() call, the page refcount can have one of 3 values. It can also be 0, if there is no owner of the other page half, and xdp_do_redirect() for this buffer ran so far that it triggered a flush of the devmap/cpumap bulk queue, and the consumers of those bulk queues also freed the buffer, all by the time xdp_do_redirect() returns the execution back to enetc. This is the reason why enetc_flip_rx_buff() is called before xdp_do_redirect(), but there is a big flaw with that reasoning: enetc_flip_rx_buff() will set rx_swbd->page = NULL on both sides of the enetc_page_reusable() branch, and if xdp_do_redirect() returns an error, we call enetc_xdp_free(), which does not deal gracefully with that. In fact, what happens is quite special. The page refcounts start as 1. enetc_flip_rx_buff() figures they're reusable, transfers these rx_swbd->page pointers to a different rx_swbd in enetc_reuse_page(), and bumps the refcount to 2. When xdp_do_redirect() later returns an error, we call the no-op enetc_xdp_free(), but we still haven't lost the reference to that page. A copy of it is still at rx_ring->next_to_alloc, but that has refcount 2 (and there are no concurrent owners of it in flight, to drop the refcount). What really kills the system is when we'll flip the rx_swbd->page the second time around. With an updated refcount of 2, the page will not be reusable and we'll really leak it. Then enetc_new_page() will have to allocate more pages, which will then eventually leak again on further errors from xdp_do_redirect(). The problem, summarized, is that we zeroize rx_swbd->page before we're completely done with it, and this makes it impossible for the error path to do something with it. Since the packet is potentially multi-buffer and therefore the rx_swbd->page is potentially an array, manual passing of the old pointers between enetc_flip_rx_buff() and enetc_xdp_free() is a bit difficult. For the sake of going with a simple solution, we accept the possibility of racing with xdp_do_redirect(), and we move the flip procedure to execute only on the redirect success path. By racing, I mean that the page may be deemed as not reusable by enetc (having a refcount of 0), but there will be no leak in that case, either. Once we accept that, we have something better to do with buffers on XDP_REDIRECT failure. Since we haven't performed half-page flipping yet, we won't, either (and this way, we can avoid enetc_xdp_free() completely, which gives the entire page to the slab allocator). Instead, we'll call enetc_xdp_drop(), which will recycle this half of the buffer back to the RX ring.
CVE-2025-39953 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cgroup: split cgroup_destroy_wq into 3 workqueues A hung task can occur during [1] LTP cgroup testing when repeatedly mounting/unmounting perf_event and net_prio controllers with systemd.unified_cgroup_hierarchy=1. The hang manifests in cgroup_lock_and_drain_offline() during root destruction. Related case: cgroup_fj_function_perf_event cgroup_fj_function.sh perf_event cgroup_fj_function_net_prio cgroup_fj_function.sh net_prio Call Trace: cgroup_lock_and_drain_offline+0x14c/0x1e8 cgroup_destroy_root+0x3c/0x2c0 css_free_rwork_fn+0x248/0x338 process_one_work+0x16c/0x3b8 worker_thread+0x22c/0x3b0 kthread+0xec/0x100 ret_from_fork+0x10/0x20 Root Cause: CPU0 CPU1 mount perf_event umount net_prio cgroup1_get_tree cgroup_kill_sb rebind_subsystems // root destruction enqueues // cgroup_destroy_wq // kill all perf_event css // one perf_event css A is dying // css A offline enqueues cgroup_destroy_wq // root destruction will be executed first css_free_rwork_fn cgroup_destroy_root cgroup_lock_and_drain_offline // some perf descendants are dying // cgroup_destroy_wq max_active = 1 // waiting for css A to die Problem scenario: 1. CPU0 mounts perf_event (rebind_subsystems) 2. CPU1 unmounts net_prio (cgroup_kill_sb), queuing root destruction work 3. A dying perf_event CSS gets queued for offline after root destruction 4. Root destruction waits for offline completion, but offline work is blocked behind root destruction in cgroup_destroy_wq (max_active=1) Solution: Split cgroup_destroy_wq into three dedicated workqueues: cgroup_offline_wq – Handles CSS offline operations cgroup_release_wq – Manages resource release cgroup_free_wq – Performs final memory deallocation This separation eliminates blocking in the CSS free path while waiting for offline operations to complete. [1] https://github.com/linux-test-project/ltp/blob/master/runtest/controllers
CVE-2025-4302 1 Fullworksplugins 1 Stop User Enumeration 2026-01-23 5.3 Medium
The Stop User Enumeration WordPress plugin before version 1.7.3 blocks REST API /wp-json/wp/v2/users/ requests for non-authorized users. However, this can be bypassed by URL-encoding the API path.
CVE-2025-31125 1 Vitejs 1 Vite 2026-01-23 5.3 Medium
Vite is a frontend tooling framework for javascript. Vite exposes content of non-allowed files using ?inline&import or ?raw?import. Only apps explicitly exposing the Vite dev server to the network (using --host or server.host config option) are affected. This vulnerability is fixed in 6.2.4, 6.1.3, 6.0.13, 5.4.16, and 4.5.11.
CVE-2026-0612 1 Thelibrarian 2 The Librarian, Thelibrarian 2026-01-23 7.5 High
The Librarian contains a information leakage vulnerability through the `web_fetch` tool, which can be used to retrieve arbitrary external content provided by an attacker, which can be used to proxy requests through The Librarian infrastructure. The vendor has fixed the vulnerability in all versions of TheLibrarian.
CVE-2026-0615 1 Thelibrarian 2 The Librarian, Thelibrarian 2026-01-23 7.3 High
The Librarian `supervisord` status page can be retrieved by the `web_fetch` tool, which can be used to retrieve running processes within TheLibrarian backend. The vendor has fixed the vulnerability in all affected versions.
CVE-2026-0616 1 Thelibrarian 2 The Librarian, Thelibrarian 2026-01-23 7.5 High
TheLibrarians web_fetch tool can be used to retrieve the Adminer interface content, which can then be used to log into the internal TheLibrarian backend system. The vendor has fixed the vulnerability in all affected versions.
CVE-2022-49852 1 Linux 1 Linux Kernel 2026-01-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: riscv: process: fix kernel info leakage thread_struct's s[12] may contain random kernel memory content, which may be finally leaked to userspace. This is a security hole. Fix it by clearing the s[12] array in thread_struct when fork. As for kthread case, it's better to clear the s[12] array as well.
CVE-2022-49970 1 Linux 1 Linux Kernel 2026-01-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: bpf, cgroup: Fix kernel BUG in purge_effective_progs Syzkaller reported a triggered kernel BUG as follows: ------------[ cut here ]------------ kernel BUG at kernel/bpf/cgroup.c:925! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 194 Comm: detach Not tainted 5.19.0-14184-g69dac8e431af #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__cgroup_bpf_detach+0x1f2/0x2a0 Code: 00 e8 92 60 30 00 84 c0 75 d8 4c 89 e0 31 f6 85 f6 74 19 42 f6 84 28 48 05 00 00 02 75 0e 48 8b 80 c0 00 00 00 48 85 c0 75 e5 <0f> 0b 48 8b 0c5 RSP: 0018:ffffc9000055bdb0 EFLAGS: 00000246 RAX: 0000000000000000 RBX: ffff888100ec0800 RCX: ffffc900000f1000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff888100ec4578 RBP: 0000000000000000 R08: ffff888100ec0800 R09: 0000000000000040 R10: 0000000000000000 R11: 0000000000000000 R12: ffff888100ec4000 R13: 000000000000000d R14: ffffc90000199000 R15: ffff888100effb00 FS: 00007f68213d2b80(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f74a0e5850 CR3: 0000000102836000 CR4: 00000000000006e0 Call Trace: <TASK> cgroup_bpf_prog_detach+0xcc/0x100 __sys_bpf+0x2273/0x2a00 __x64_sys_bpf+0x17/0x20 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f68214dbcb9 Code: 08 44 89 e0 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff8 RSP: 002b:00007ffeb487db68 EFLAGS: 00000246 ORIG_RAX: 0000000000000141 RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f68214dbcb9 RDX: 0000000000000090 RSI: 00007ffeb487db70 RDI: 0000000000000009 RBP: 0000000000000003 R08: 0000000000000012 R09: 0000000b00000003 R10: 00007ffeb487db70 R11: 0000000000000246 R12: 00007ffeb487dc20 R13: 0000000000000004 R14: 0000000000000001 R15: 000055f74a1011b0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- Repetition steps: For the following cgroup tree, root | cg1 | cg2 1. attach prog2 to cg2, and then attach prog1 to cg1, both bpf progs attach type is NONE or OVERRIDE. 2. write 1 to /proc/thread-self/fail-nth for failslab. 3. detach prog1 for cg1, and then kernel BUG occur. Failslab injection will cause kmalloc fail and fall back to purge_effective_progs. The problem is that cg2 have attached another prog, so when go through cg2 layer, iteration will add pos to 1, and subsequent operations will be skipped by the following condition, and cg will meet NULL in the end. `if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))` The NULL cg means no link or prog match, this is as expected, and it's not a bug. So here just skip the no match situation.
CVE-2022-50270 1 Linux 1 Linux Kernel 2026-01-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix the assign logic of iocb commit 18ae8d12991b ("f2fs: show more DIO information in tracepoint") introduces iocb field in 'f2fs_direct_IO_enter' trace event And it only assigns the pointer and later it accesses its field in trace print log. Unable to handle kernel paging request at virtual address ffffffc04cef3d30 Mem abort info: ESR = 0x96000007 EC = 0x25: DABT (current EL), IL = 32 bits pc : trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4 lr : trace_raw_output_f2fs_direct_IO_enter+0x2c/0xa4 sp : ffffffc0443cbbd0 x29: ffffffc0443cbbf0 x28: ffffff8935b120d0 x27: ffffff8935b12108 x26: ffffff8935b120f0 x25: ffffff8935b12100 x24: ffffff8935b110c0 x23: ffffff8935b10000 x22: ffffff88859a936c x21: ffffff88859a936c x20: ffffff8935b110c0 x19: ffffff8935b10000 x18: ffffffc03b195060 x17: ffffff8935b11e76 x16: 00000000000000cc x15: ffffffef855c4f2c x14: 0000000000000001 x13: 000000000000004e x12: ffff0000ffffff00 x11: ffffffef86c350d0 x10: 00000000000010c0 x9 : 000000000fe0002c x8 : ffffffc04cef3d28 x7 : 7f7f7f7f7f7f7f7f x6 : 0000000002000000 x5 : ffffff8935b11e9a x4 : 0000000000006250 x3 : ffff0a00ffffff04 x2 : 0000000000000002 x1 : ffffffef86a0a31f x0 : ffffff8935b10000 Call trace: trace_raw_output_f2fs_direct_IO_enter+0x54/0xa4 print_trace_fmt+0x9c/0x138 print_trace_line+0x154/0x254 tracing_read_pipe+0x21c/0x380 vfs_read+0x108/0x3ac ksys_read+0x7c/0xec __arm64_sys_read+0x20/0x30 invoke_syscall+0x60/0x150 el0_svc_common.llvm.1237943816091755067+0xb8/0xf8 do_el0_svc+0x28/0xa0 Fix it by copying the required variables for printing and while at it fix the similar issue at some other places in the same file.