Filtered by vendor Nodejs Subscriptions
Filtered by product Node.js Subscriptions
Total 160 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2015-5380 3 Google, Iojs, Nodejs 3 V8, Io.js, Node.js 2025-04-12 N/A
The Utf8DecoderBase::WriteUtf16Slow function in unicode-decoder.cc in Google V8, as used in Node.js before 0.12.6, io.js before 1.8.3 and 2.x before 2.3.3, and other products, does not verify that there is memory available for a UTF-16 surrogate pair, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a crafted byte sequence.
CVE-2016-2216 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2025-04-12 N/A
The HTTP header parsing code in Node.js 0.10.x before 0.10.42, 0.11.6 through 0.11.16, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allows remote attackers to bypass an HTTP response-splitting protection mechanism via UTF-8 encoded Unicode characters in the HTTP header, as demonstrated by %c4%8d%c4%8a.
CVE-2016-6306 7 Canonical, Debian, Hp and 4 more 11 Ubuntu Linux, Debian Linux, Icewall Federation Agent and 8 more 2025-04-12 5.9 Medium
The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c.
CVE-2016-6304 4 Nodejs, Novell, Openssl and 1 more 11 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl and 8 more 2025-04-12 7.5 High
Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions.
CVE-2014-0224 9 Fedoraproject, Filezilla-project, Mariadb and 6 more 23 Fedora, Filezilla Server, Mariadb and 20 more 2025-04-12 7.4 High
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.
CVE-2016-0797 5 Canonical, Debian, Nodejs and 2 more 6 Ubuntu Linux, Debian Linux, Node.js and 3 more 2025-04-12 7.5 High
Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c.
CVE-2016-6303 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-12 9.8 Critical
Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.
CVE-2013-6668 4 Debian, Google, Nodejs and 1 more 7 Debian Linux, Chrome, V8 and 4 more 2025-04-12 N/A
Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors.
CVE-2016-1669 6 Canonical, Debian, Google and 3 more 11 Ubuntu Linux, Debian Linux, Chrome and 8 more 2025-04-12 8.8 High
The Zone::New function in zone.cc in Google V8 before 5.0.71.47, as used in Google Chrome before 50.0.2661.102, does not properly determine when to expand certain memory allocations, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via crafted JavaScript code.
CVE-2016-5180 6 C-ares, C-ares Project, Canonical and 3 more 6 C-ares, C-ares, Ubuntu Linux and 3 more 2025-04-12 9.8 Critical
Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0 allows remote attackers to cause a denial of service (out-of-bounds write) or possibly execute arbitrary code via a hostname with an escaped trailing dot.
CVE-2016-5325 3 Nodejs, Redhat, Suse 4 Node.js, Openshift, Rhel Software Collections and 1 more 2025-04-12 N/A
CRLF injection vulnerability in the ServerResponse#writeHead function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via the reason argument.
CVE-2016-7099 3 Nodejs, Redhat, Suse 3 Node.js, Rhel Software Collections, Linux Enterprise 2025-04-12 N/A
The tls.checkServerIdentity function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 does not properly handle wildcards in name fields of X.509 certificates, which allows man-in-the-middle attackers to spoof servers via a crafted certificate.
CVE-2016-2178 7 Canonical, Debian, Nodejs and 4 more 10 Ubuntu Linux, Debian Linux, Node.js and 7 more 2025-04-12 5.5 Medium
The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack.
CVE-2015-3193 3 Canonical, Nodejs, Openssl 3 Ubuntu Linux, Node.js, Openssl 2025-04-12 7.5 High
The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite.
CVE-2013-2882 4 Debian, Google, Nodejs and 1 more 6 Debian Linux, Chrome, Node.js and 3 more 2025-04-11 N/A
Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion."
CVE-2023-23936 2 Nodejs, Redhat 4 Node.js, Undici, Enterprise Linux and 1 more 2025-03-10 6.5 Medium
Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici.
CVE-2025-23088 1 Nodejs 1 Node.js 2025-03-01 8.8 High
This Record was REJECTED after determining it is not in compliance with CVE Program requirements regarding assignment for vulnerabilities
CVE-2019-9515 12 Apache, Apple, Canonical and 9 more 36 Traffic Server, Mac Os X, Swiftnio and 33 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9517 12 Apache, Apple, Canonical and 9 more 28 Http Server, Traffic Server, Mac Os X and 25 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
CVE-2019-9518 11 Apache, Apple, Canonical and 8 more 26 Traffic Server, Mac Os X, Swiftnio and 23 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.