Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16690 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-71148 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/handshake: restore destructor on submit failure handshake_req_submit() replaces sk->sk_destruct but never restores it when submission fails before the request is hashed. handshake_sk_destruct() then returns early and the original destructor never runs, leaking the socket. Restore sk_destruct on the error path. | ||||
| CVE-2026-22983 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: do not write to msg_get_inq in callee NULL pointer dereference fix. msg_get_inq is an input field from caller to callee. Don't set it in the callee, as the caller may not clear it on struct reuse. This is a kernel-internal variant of msghdr only, and the only user does reinitialize the field. So this is not critical for that reason. But it is more robust to avoid the write, and slightly simpler code. And it fixes a bug, see below. Callers set msg_get_inq to request the input queue length to be returned in msg_inq. This is equivalent to but independent from the SO_INQ request to return that same info as a cmsg (tp->recvmsg_inq). To reduce branching in the hot path the second also sets the msg_inq. That is WAI. This is a fix to commit 4d1442979e4a ("af_unix: don't post cmsg for SO_INQ unless explicitly asked for"), which fixed the inverse. Also avoid NULL pointer dereference in unix_stream_read_generic if state->msg is NULL and msg->msg_get_inq is written. A NULL state->msg can happen when splicing as of commit 2b514574f7e8 ("net: af_unix: implement splice for stream af_unix sockets"). Also collapse two branches using a bitwise or. | ||||
| CVE-2026-22990 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: libceph: replace overzealous BUG_ON in osdmap_apply_incremental() If the osdmap is (maliciously) corrupted such that the incremental osdmap epoch is different from what is expected, there is no need to BUG. Instead, just declare the incremental osdmap to be invalid. | ||||
| CVE-2026-22987 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/sched: act_api: avoid dereferencing ERR_PTR in tcf_idrinfo_destroy syzbot reported a crash in tc_act_in_hw() during netns teardown where tcf_idrinfo_destroy() passed an ERR_PTR(-EBUSY) value as a tc_action pointer, leading to an invalid dereference. Guard against ERR_PTR entries when iterating the action IDR so teardown does not call tc_act_in_hw() on an error pointer. | ||||
| CVE-2026-22989 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: nfsd: check that server is running in unlock_filesystem If we are trying to unlock the filesystem via an administrative interface and nfsd isn't running, it crashes the server. This happens currently because nfsd4_revoke_states() access state structures (eg., conf_id_hashtbl) that has been freed as a part of the server shutdown. [ 59.465072] Call trace: [ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P) [ 59.465830] write_unlock_fs+0x258/0x440 [nfsd] [ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd] [ 59.466780] vfs_write+0x1f0/0x938 [ 59.467088] ksys_write+0xfc/0x1f8 [ 59.467395] __arm64_sys_write+0x74/0xb8 [ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8 [ 59.468177] do_el0_svc+0x154/0x1d8 [ 59.468489] el0_svc+0x40/0xe0 [ 59.468767] el0t_64_sync_handler+0xa0/0xe8 [ 59.469138] el0t_64_sync+0x1ac/0x1b0 Ensure this can't happen by taking the nfsd_mutex and checking that the server is still up, and then holding the mutex across the call to nfsd4_revoke_states(). | ||||
| CVE-2025-71163 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix device leaks on compat bind and unbind Make sure to drop the reference taken when looking up the idxd device as part of the compat bind and unbind sysfs interface. | ||||
| CVE-2026-23006 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: tlv320adcx140: fix null pointer The "snd_soc_component" in "adcx140_priv" was only used once but never set. It was only used for reaching "dev" which is already present in "adcx140_priv". | ||||
| CVE-2026-23000 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix crash on profile change rollback failure mlx5e_netdev_change_profile can fail to attach a new profile and can fail to rollback to old profile, in such case, we could end up with a dangling netdev with a fully reset netdev_priv. A retry to change profile, e.g. another attempt to call mlx5e_netdev_change_profile via switchdev mode change, will crash trying to access the now NULL priv->mdev. This fix allows mlx5e_netdev_change_profile() to handle previous failures and an empty priv, by not assuming priv is valid. Pass netdev and mdev to all flows requiring mlx5e_netdev_change_profile() and avoid passing priv. In mlx5e_netdev_change_profile() check if current priv is valid, and if not, just attach the new profile without trying to access the old one. This fixes the following oops, when enabling switchdev mode for the 2nd time after first time failure: ## Enabling switchdev mode first time: mlx5_core 0012:03:00.1: E-Switch: Supported tc chains and prios offload workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12 workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 ^^^^^^^^ mlx5_core 0000:00:03.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) ## retry: Enabling switchdev mode 2nd time: mlx5_core 0000:00:03.0: E-Switch: Supported tc chains and prios offload BUG: kernel NULL pointer dereference, address: 0000000000000038 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 13 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc4+ #91 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:mlx5e_detach_netdev+0x3c/0x90 Code: 50 00 00 f0 80 4f 78 02 48 8b bf e8 07 00 00 48 85 ff 74 16 48 8b 73 78 48 d1 ee 83 e6 01 83 f6 01 40 0f b6 f6 e8 c4 42 00 00 <48> 8b 45 38 48 85 c0 74 08 48 89 df e8 cc 47 40 1e 48 8b bb f0 07 RSP: 0018:ffffc90000673890 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8881036a89c0 RCX: 0000000000000000 RDX: ffff888113f63800 RSI: ffffffff822fe720 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000002dcd R09: 0000000000000000 R10: ffffc900006738e8 R11: 00000000ffffffff R12: 0000000000000000 R13: 0000000000000000 R14: ffff8881036a89c0 R15: 0000000000000000 FS: 00007fdfb8384740(0000) GS:ffff88856a9d6000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000038 CR3: 0000000112ae0005 CR4: 0000000000370ef0 Call Trace: <TASK> mlx5e_netdev_change_profile+0x45/0xb0 mlx5e_vport_rep_load+0x27b/0x2d0 mlx5_esw_offloads_rep_load+0x72/0xf0 esw_offloads_enable+0x5d0/0x970 mlx5_eswitch_enable_locked+0x349/0x430 ? is_mp_supported+0x57/0xb0 mlx5_devlink_eswitch_mode_set+0x26b/0x430 devlink_nl_eswitch_set_doit+0x6f/0xf0 genl_family_rcv_msg_doit+0xe8/0x140 genl_rcv_msg+0x18b/0x290 ? __pfx_devlink_nl_pre_doit+0x10/0x10 ? __pfx_devlink_nl_eswitch_set_doit+0x10/0x10 ? __pfx_devlink_nl_post_doit+0x10/0x10 ? __pfx_genl_rcv_msg+0x10/0x10 netlink_rcv_skb+0x52/0x100 genl_rcv+0x28/0x40 netlink_unicast+0x282/0x3e0 ? __alloc_skb+0xd6/0x190 netlink_sendmsg+0x1f7/0x430 __sys_sendto+0x213/0x220 ? __sys_recvmsg+0x6a/0xd0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x50/0x1f0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fdfb8495047 | ||||
| CVE-2026-22988 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: arp: do not assume dev_hard_header() does not change skb->head arp_create() is the only dev_hard_header() caller making assumption about skb->head being unchanged. A recent commit broke this assumption. Initialize @arp pointer after dev_hard_header() call. | ||||
| CVE-2026-23010 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix use-after-free in inet6_addr_del(). syzbot reported use-after-free of inet6_ifaddr in inet6_addr_del(). [0] The cited commit accidentally moved ipv6_del_addr() for mngtmpaddr before reading its ifp->flags for temporary addresses in inet6_addr_del(). Let's move ipv6_del_addr() down to fix the UAF. [0]: BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593 CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181 inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f164cf8f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749 RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003 RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288 </TASK> Allocated by task 9593: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120 inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050 addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160 inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6099: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2540 [inline] slab_free_freelist_hook mm/slub.c:2569 [inline] slab_free_bulk mm/slub.c:6696 [inline] kmem_cache_free_bulk mm/slub.c:7383 [inline] kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362 kfree_bulk include/linux/slab.h:830 [inline] kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523 kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline] kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801 process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257 process_scheduled_works kernel/workqu ---truncated--- | ||||
| CVE-2026-22992 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: libceph: return the handler error from mon_handle_auth_done() Currently any error from ceph_auth_handle_reply_done() is propagated via finish_auth() but isn't returned from mon_handle_auth_done(). This results in higher layers learning that (despite the monitor considering us to be successfully authenticated) something went wrong in the authentication phase and reacting accordingly, but msgr2 still trying to proceed with establishing the session in the background. In the case of secure mode this can trigger a WARN in setup_crypto() and later lead to a NULL pointer dereference inside of prepare_auth_signature(). | ||||
| CVE-2025-71162 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: dmaengine: tegra-adma: Fix use-after-free A use-after-free bug exists in the Tegra ADMA driver when audio streams are terminated, particularly during XRUN conditions. The issue occurs when the DMA buffer is freed by tegra_adma_terminate_all() before the vchan completion tasklet finishes accessing it. The race condition follows this sequence: 1. DMA transfer completes, triggering an interrupt that schedules the completion tasklet (tasklet has not executed yet) 2. Audio playback stops, calling tegra_adma_terminate_all() which frees the DMA buffer memory via kfree() 3. The scheduled tasklet finally executes, calling vchan_complete() which attempts to access the already-freed memory Since tasklets can execute at any time after being scheduled, there is no guarantee that the buffer will remain valid when vchan_complete() runs. Fix this by properly synchronizing the virtual channel completion: - Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the descriptors as terminated instead of freeing the descriptor. - Add the callback tegra_adma_synchronize() that calls vchan_synchronize() which kills any pending tasklets and frees any terminated descriptors. Crash logs: [ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0 [ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0 [ 337.427562] Call trace: [ 337.427564] dump_backtrace+0x0/0x320 [ 337.427571] show_stack+0x20/0x30 [ 337.427575] dump_stack_lvl+0x68/0x84 [ 337.427584] print_address_description.constprop.0+0x74/0x2b8 [ 337.427590] kasan_report+0x1f4/0x210 [ 337.427598] __asan_load8+0xa0/0xd0 [ 337.427603] vchan_complete+0x124/0x3b0 [ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0 [ 337.427617] tasklet_action+0x30/0x40 [ 337.427623] __do_softirq+0x1a0/0x5c4 [ 337.427628] irq_exit+0x110/0x140 [ 337.427633] handle_domain_irq+0xa4/0xe0 [ 337.427640] gic_handle_irq+0x64/0x160 [ 337.427644] call_on_irq_stack+0x20/0x4c [ 337.427649] do_interrupt_handler+0x7c/0x90 [ 337.427654] el1_interrupt+0x30/0x80 [ 337.427659] el1h_64_irq_handler+0x18/0x30 [ 337.427663] el1h_64_irq+0x7c/0x80 [ 337.427667] cpuidle_enter_state+0xe4/0x540 [ 337.427674] cpuidle_enter+0x54/0x80 [ 337.427679] do_idle+0x2e0/0x380 [ 337.427685] cpu_startup_entry+0x2c/0x70 [ 337.427690] rest_init+0x114/0x130 [ 337.427695] arch_call_rest_init+0x18/0x24 [ 337.427702] start_kernel+0x380/0x3b4 [ 337.427706] __primary_switched+0xc0/0xc8 | ||||
| CVE-2026-23002 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: lib/buildid: use __kernel_read() for sleepable context Prevent a "BUG: unable to handle kernel NULL pointer dereference in filemap_read_folio". For the sleepable context, convert freader to use __kernel_read() instead of direct page cache access via read_cache_folio(). This simplifies the faultable code path by using the standard kernel file reading interface which handles all the complexity of reading file data. At the moment we are not changing the code for non-sleepable context which uses filemap_get_folio() and only succeeds if the target folios are already in memory and up-to-date. The reason is to keep the patch simple and easier to backport to stable kernels. Syzbot repro does not crash the kernel anymore and the selftests run successfully. In the follow up we will make __kernel_read() with IOCB_NOWAIT work for non-sleepable contexts. In addition, I would like to replace the secretmem check with a more generic approach and will add fstest for the buildid code. | ||||
| CVE-2026-23001 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: macvlan: fix possible UAF in macvlan_forward_source() Add RCU protection on (struct macvlan_source_entry)->vlan. Whenever macvlan_hash_del_source() is called, we must clear entry->vlan pointer before RCU grace period starts. This allows macvlan_forward_source() to skip over entries queued for freeing. Note that macvlan_dev are already RCU protected, as they are embedded in a standard netdev (netdev_priv(ndev)). https: //lore.kernel.org/netdev/695fb1e8.050a0220.1c677c.039f.GAE@google.com/T/#u | ||||
| CVE-2026-22997 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is called only when the timer is enabled, we need to call j1939_session_deactivate_activate_next() if we cancelled the timer. Otherwise, refcount for j1939_session leaks, which will later appear as | unregister_netdevice: waiting for vcan0 to become free. Usage count = 2. problem. | ||||
| CVE-2026-23013 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to ioq_vector. If request_irq() fails part-way, the rollback loop calls free_irq() with dev_id set to 'oct', which does not match the original dev_id and may leave the irqaction registered. This can keep IRQ handlers alive while ioq_vector is later freed during unwind/teardown, leading to a use-after-free or crash when an interrupt fires. Fix the error path to free IRQs with the same ioq_vector dev_id used during request_irq(). | ||||
| CVE-2026-22994 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reference count leak in bpf_prog_test_run_xdp() syzbot is reporting unregister_netdevice: waiting for sit0 to become free. Usage count = 2 problem. A debug printk() patch found that a refcount is obtained at xdp_convert_md_to_buff() from bpf_prog_test_run_xdp(). According to commit ec94670fcb3b ("bpf: Support specifying ingress via xdp_md context in BPF_PROG_TEST_RUN"), the refcount obtained by xdp_convert_md_to_buff() will be released by xdp_convert_buff_to_md(). Therefore, we can consider that the error handling path introduced by commit 1c1949982524 ("bpf: introduce frags support to bpf_prog_test_run_xdp()") forgot to call xdp_convert_buff_to_md(). | ||||
| CVE-2026-23003 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv() Blamed commit did not take care of VLAN encapsulations as spotted by syzbot [1]. Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull(). [1] BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729 __ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860 ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903 gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1 ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500 ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:318 [inline] ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core net/core/dev.c:6139 [inline] __netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252 netif_receive_skb_internal net/core/dev.c:6338 [inline] netif_receive_skb+0x57/0x630 net/core/dev.c:6397 tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485 tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4960 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315 kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586 __alloc_skb+0x805/0x1040 net/core/skbuff.c:690 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712 sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995 tun_alloc_skb drivers/net/tun.c:1461 [inline] tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 | ||||
| CVE-2026-23004 | 1 Linux | 1 Linux Kernel | 2026-01-26 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: dst: fix races in rt6_uncached_list_del() and rt_del_uncached_list() syzbot was able to crash the kernel in rt6_uncached_list_flush_dev() in an interesting way [1] Crash happens in list_del_init()/INIT_LIST_HEAD() while writing list->prev, while the prior write on list->next went well. static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); // This went well WRITE_ONCE(list->prev, list); // Crash, @list has been freed. } Issue here is that rt6_uncached_list_del() did not attempt to lock ul->lock, as list_empty(&rt->dst.rt_uncached) returned true because the WRITE_ONCE(list->next, list) happened on the other CPU. We might use list_del_init_careful() and list_empty_careful(), or make sure rt6_uncached_list_del() always grabs the spinlock whenever rt->dst.rt_uncached_list has been set. A similar fix is neeed for IPv4. [1] BUG: KASAN: slab-use-after-free in INIT_LIST_HEAD include/linux/list.h:46 [inline] BUG: KASAN: slab-use-after-free in list_del_init include/linux/list.h:296 [inline] BUG: KASAN: slab-use-after-free in rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline] BUG: KASAN: slab-use-after-free in rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020 Write of size 8 at addr ffff8880294cfa78 by task kworker/u8:14/3450 CPU: 0 UID: 0 PID: 3450 Comm: kworker/u8:14 Tainted: G L syzkaller #0 PREEMPT_{RT,(full)} Tainted: [L]=SOFTLOCKUP Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: netns cleanup_net Call Trace: <TASK> dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 INIT_LIST_HEAD include/linux/list.h:46 [inline] list_del_init include/linux/list.h:296 [inline] rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline] rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020 addrconf_ifdown+0x143/0x18a0 net/ipv6/addrconf.c:3853 addrconf_notify+0x1bc/0x1050 net/ipv6/addrconf.c:-1 notifier_call_chain+0x19d/0x3a0 kernel/notifier.c:85 call_netdevice_notifiers_extack net/core/dev.c:2268 [inline] call_netdevice_notifiers net/core/dev.c:2282 [inline] netif_close_many+0x29c/0x410 net/core/dev.c:1785 unregister_netdevice_many_notify+0xb50/0x2330 net/core/dev.c:12353 ops_exit_rtnl_list net/core/net_namespace.c:187 [inline] ops_undo_list+0x3dc/0x990 net/core/net_namespace.c:248 cleanup_net+0x4de/0x7b0 net/core/net_namespace.c:696 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 </TASK> Allocated by task 803: kasan_save_stack mm/kasan/common.c:57 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:78 unpoison_slab_object mm/kasan/common.c:340 [inline] __kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:366 kasan_slab_alloc include/linux/kasan.h:253 [inline] slab_post_alloc_hook mm/slub.c:4953 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_noprof+0x18d/0x6c0 mm/slub.c:5270 dst_alloc+0x105/0x170 net/core/dst.c:89 ip6_dst_alloc net/ipv6/route.c:342 [inline] icmp6_dst_alloc+0x75/0x460 net/ipv6/route.c:3333 mld_sendpack+0x683/0xe60 net/ipv6/mcast.c:1844 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr ---truncated--- | ||||
| CVE-2026-23005 | 1 Linux | 1 Linux Kernel | 2026-01-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1 When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in response to a guest WRMSR, clear XFD-disabled features in the saved (or to be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for features that are disabled via the guest's XFD. Because the kernel executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1 will cause XRSTOR to #NM and panic the kernel. E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848 Modules linked in: kvm_intel kvm irqbypass CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 switch_fpu_return+0x4a/0xb0 kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1, and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's call to fpu_update_guest_xfd(). and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867 Modules linked in: kvm_intel kvm irqbypass CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 fpu_swap_kvm_fpstate+0x6b/0x120 kvm_load_guest_fpu+0x30/0x80 [kvm] kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- The new behavior is consistent with the AMX architecture. Per Intel's SDM, XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD (and non-compacted XSAVE saves the initial configuration of the state component): If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it operates as if XINUSE[i] = 0 (and the state component was in its initial state): it saves bit i of XSTATE_BV field of the XSAVE header as 0; in addition, XSAVE saves the initial configuration of the state component (the other instructions do not save state component i). Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using a constant XFD based on the set of enabled features when XSAVEing for a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled features can only happen in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, because fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the outgoing FPU state with the current XFD; and that is (on all but the first WRMSR to XFD) the guest XFD. Therefore, XFD can only go out of sync with XSTATE_BV in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, and it we can consider it (de facto) part of KVM ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features. [Move clea ---truncated--- | ||||