Filtered by vendor Redhat
Subscriptions
Filtered by product Enterprise Linux Server Aus
Subscriptions
Total
1056 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2017-12615 | 4 Apache, Microsoft, Netapp and 1 more | 24 Tomcat, Windows, 7-mode Transition Tool and 21 more | 2025-04-20 | 8.1 High |
When running Apache Tomcat 7.0.0 to 7.0.79 on Windows with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server. | ||||
CVE-2015-7691 | 5 Debian, Netapp, Ntp and 2 more | 14 Debian Linux, Clustered Data Ontap, Data Ontap and 11 more | 2025-04-20 | 7.5 High |
The crypto_xmit function in ntpd in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (crash) via crafted packets containing particular autokey operations. NOTE: This vulnerability exists due to an incomplete fix for CVE-2014-9750. | ||||
CVE-2015-7852 | 5 Debian, Netapp, Ntp and 2 more | 15 Debian Linux, Clustered Data Ontap, Data Ontap and 12 more | 2025-04-20 | 5.9 Medium |
ntpq in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (crash) via crafted mode 6 response packets. | ||||
CVE-2015-8896 | 3 Imagemagick, Oracle, Redhat | 9 Imagemagick, Linux, Enterprise Linux and 6 more | 2025-04-20 | 6.5 Medium |
Integer truncation issue in coders/pict.c in ImageMagick before 7.0.5-0 allows remote attackers to cause a denial of service (application crash) via a crafted .pict file. | ||||
CVE-2016-10165 | 6 Canonical, Debian, Littlecms and 3 more | 23 Ubuntu Linux, Debian Linux, Little Cms Color Engine and 20 more | 2025-04-20 | 7.1 High |
The Type_MLU_Read function in cmstypes.c in Little CMS (aka lcms2) allows remote attackers to obtain sensitive information or cause a denial of service via an image with a crafted ICC profile, which triggers an out-of-bounds heap read. | ||||
CVE-2016-1908 | 4 Debian, Openbsd, Oracle and 1 more | 10 Debian Linux, Openssh, Linux and 7 more | 2025-04-20 | 9.8 Critical |
The client in OpenSSH before 7.2 mishandles failed cookie generation for untrusted X11 forwarding and relies on the local X11 server for access-control decisions, which allows remote X11 clients to trigger a fallback and obtain trusted X11 forwarding privileges by leveraging configuration issues on this X11 server, as demonstrated by lack of the SECURITY extension on this X11 server. | ||||
CVE-2016-6794 | 6 Apache, Canonical, Debian and 3 more | 15 Tomcat, Ubuntu Linux, Debian Linux and 12 more | 2025-04-20 | 5.3 Medium |
When a SecurityManager is configured, a web application's ability to read system properties should be controlled by the SecurityManager. In Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70, 6.0.0 to 6.0.45 the system property replacement feature for configuration files could be used by a malicious web application to bypass the SecurityManager and read system properties that should not be visible. | ||||
CVE-2016-6796 | 6 Apache, Canonical, Debian and 3 more | 16 Tomcat, Ubuntu Linux, Debian Linux and 13 more | 2025-04-20 | 7.5 High |
A malicious web application running on Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 was able to bypass a configured SecurityManager via manipulation of the configuration parameters for the JSP Servlet. | ||||
CVE-2016-8610 | 7 Debian, Fujitsu, Netapp and 4 more | 55 Debian Linux, M10-1, M10-1 Firmware and 52 more | 2025-04-20 | 7.5 High |
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients. | ||||
CVE-2016-8743 | 4 Apache, Debian, Netapp and 1 more | 13 Http Server, Debian Linux, Clustered Data Ontap and 10 more | 2025-04-20 | 7.5 High |
Apache HTTP Server, in all releases prior to 2.2.32 and 2.4.25, was liberal in the whitespace accepted from requests and sent in response lines and headers. Accepting these different behaviors represented a security concern when httpd participates in any chain of proxies or interacts with back-end application servers, either through mod_proxy or using conventional CGI mechanisms, and may result in request smuggling, response splitting and cache pollution. | ||||
CVE-2017-1000111 | 3 Debian, Linux, Redhat | 11 Debian Linux, Linux Kernel, Enterprise Linux and 8 more | 2025-04-20 | 7.8 High |
Linux kernel: heap out-of-bounds in AF_PACKET sockets. This new issue is analogous to previously disclosed CVE-2016-8655. In both cases, a socket option that changes socket state may race with safety checks in packet_set_ring. Previously with PACKET_VERSION. This time with PACKET_RESERVE. The solution is similar: lock the socket for the update. This issue may be exploitable, we did not investigate further. As this issue affects PF_PACKET sockets, it requires CAP_NET_RAW in the process namespace. But note that with user namespaces enabled, any process can create a namespace in which it has CAP_NET_RAW. | ||||
CVE-2017-1000115 | 3 Debian, Mercurial, Redhat | 9 Debian Linux, Mercurial, Enterprise Linux and 6 more | 2025-04-20 | N/A |
Mercurial prior to version 4.3 is vulnerable to a missing symlink check that can malicious repositories to modify files outside the repository | ||||
CVE-2017-1000407 | 4 Canonical, Debian, Linux and 1 more | 13 Ubuntu Linux, Debian Linux, Linux Kernel and 10 more | 2025-04-20 | N/A |
The Linux Kernel 2.6.32 and later are affected by a denial of service, by flooding the diagnostic port 0x80 an exception can be triggered leading to a kernel panic. | ||||
CVE-2017-1000410 | 3 Debian, Linux, Redhat | 13 Debian Linux, Linux Kernel, Enterprise Linux and 10 more | 2025-04-20 | N/A |
The Linux kernel version 3.3-rc1 and later is affected by a vulnerability lies in the processing of incoming L2CAP commands - ConfigRequest, and ConfigResponse messages. This info leak is a result of uninitialized stack variables that may be returned to an attacker in their uninitialized state. By manipulating the code flows that precede the handling of these configuration messages, an attacker can also gain some control over which data will be held in the uninitialized stack variables. This can allow him to bypass KASLR, and stack canaries protection - as both pointers and stack canaries may be leaked in this manner. Combining this vulnerability (for example) with the previously disclosed RCE vulnerability in L2CAP configuration parsing (CVE-2017-1000251) may allow an attacker to exploit the RCE against kernels which were built with the above mitigations. These are the specifics of this vulnerability: In the function l2cap_parse_conf_rsp and in the function l2cap_parse_conf_req the following variable is declared without initialization: struct l2cap_conf_efs efs; In addition, when parsing input configuration parameters in both of these functions, the switch case for handling EFS elements may skip the memcpy call that will write to the efs variable: ... case L2CAP_CONF_EFS: if (olen == sizeof(efs)) memcpy(&efs, (void *)val, olen); ... The olen in the above if is attacker controlled, and regardless of that if, in both of these functions the efs variable would eventually be added to the outgoing configuration request that is being built: l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs), (unsigned long) &efs); So by sending a configuration request, or response, that contains an L2CAP_CONF_EFS element, but with an element length that is not sizeof(efs) - the memcpy to the uninitialized efs variable can be avoided, and the uninitialized variable would be returned to the attacker (16 bytes). | ||||
CVE-2017-10067 | 4 Debian, Netapp, Oracle and 1 more | 30 Debian Linux, Active Iq Unified Manager, Cloud Backup and 27 more | 2025-04-20 | 7.5 High |
Vulnerability in the Java SE component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in takeover of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 7.5 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H). | ||||
CVE-2017-10102 | 5 Debian, Netapp, Oracle and 2 more | 31 Debian Linux, Active Iq Unified Manager, Cloud Backup and 28 more | 2025-04-20 | 9.0 Critical |
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: RMI). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. While the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.0 Base Score 9.0 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H). | ||||
CVE-2017-10110 | 4 Debian, Netapp, Oracle and 1 more | 30 Debian Linux, Active Iq Unified Manager, Cloud Backup and 27 more | 2025-04-20 | 9.6 Critical |
Vulnerability in the Java SE component of Oracle Java SE (subcomponent: AWT). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H). | ||||
CVE-2017-10111 | 4 Debian, Netapp, Oracle and 1 more | 27 Debian Linux, Active Iq Unified Manager, Cloud Backup and 24 more | 2025-04-20 | 9.6 Critical |
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). The supported version that is affected is Java SE: 8u131; Java SE Embedded: 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H). | ||||
CVE-2017-10268 | 5 Debian, Mariadb, Netapp and 2 more | 19 Debian Linux, Mariadb, Active Iq Unified Manager and 16 more | 2025-04-20 | 4.1 Medium |
Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: Replication). Supported versions that are affected are 5.5.57 and earlier, 5.6.37 and earlier and 5.7.19 and earlier. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where MySQL Server executes to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all MySQL Server accessible data. CVSS 3.0 Base Score 4.1 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2017-10109 | 4 Debian, Netapp, Oracle and 1 more | 31 Debian Linux, Active Iq Unified Manager, Cloud Backup and 28 more | 2025-04-20 | 5.3 Medium |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L). |