Filtered by vendor Openssl
Subscriptions
Filtered by product Openssl
Subscriptions
Total
257 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2016-0797 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2025-04-12 | 7.5 High |
Multiple integer overflows in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allow remote attackers to cause a denial of service (heap memory corruption or NULL pointer dereference) or possibly have unspecified other impact via a long digit string that is mishandled by the (1) BN_dec2bn or (2) BN_hex2bn function, related to crypto/bn/bn.h and crypto/bn/bn_print.c. | ||||
CVE-2015-0293 | 2 Openssl, Redhat | 8 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 5 more | 2025-04-12 | N/A |
The SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (s2_lib.c assertion failure and daemon exit) via a crafted CLIENT-MASTER-KEY message. | ||||
CVE-2016-0799 | 3 Openssl, Pulsesecure, Redhat | 6 Openssl, Client, Steel Belted Radius and 3 more | 2025-04-12 | N/A |
The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842. | ||||
CVE-2016-2181 | 3 Openssl, Oracle, Redhat | 3 Openssl, Linux, Enterprise Linux | 2025-04-12 | N/A |
The Anti-Replay feature in the DTLS implementation in OpenSSL before 1.1.0 mishandles early use of a new epoch number in conjunction with a large sequence number, which allows remote attackers to cause a denial of service (false-positive packet drops) via spoofed DTLS records, related to rec_layer_d1.c and ssl3_record.c. | ||||
CVE-2014-3506 | 2 Openssl, Redhat | 5 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 2 more | 2025-04-12 | N/A |
d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via crafted DTLS handshake messages that trigger memory allocations corresponding to large length values. | ||||
CVE-2016-2842 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Jboss Core Services and 1 more | 2025-04-12 | N/A |
The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, which allows remote attackers to cause a denial of service (out-of-bounds write or memory consumption) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-0799. | ||||
CVE-2016-0702 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2025-04-12 | 5.1 Medium |
The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack. | ||||
CVE-2014-3507 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Storage | 2025-04-12 | N/A |
Memory leak in d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via zero-length DTLS fragments that trigger improper handling of the return value of a certain insert function. | ||||
CVE-2014-3508 | 2 Openssl, Redhat | 5 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 2 more | 2025-04-12 | N/A |
The OBJ_obj2txt function in crypto/objects/obj_dat.c in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i, when pretty printing is used, does not ensure the presence of '\0' characters, which allows context-dependent attackers to obtain sensitive information from process stack memory by reading output from X509_name_oneline, X509_name_print_ex, and unspecified other functions. | ||||
CVE-2015-0292 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Storage | 2025-04-12 | N/A |
Integer underflow in the EVP_DecodeUpdate function in crypto/evp/encode.c in the base64-decoding implementation in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via crafted base64 data that triggers a buffer overflow. | ||||
CVE-2016-0798 | 1 Openssl | 1 Openssl | 2025-04-12 | N/A |
Memory leak in the SRP_VBASE_get_by_user implementation in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory consumption) by providing an invalid username in a connection attempt, related to apps/s_server.c and crypto/srp/srp_vfy.c. | ||||
CVE-2014-8176 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Jboss Core Services | 2025-04-12 | N/A |
The dtls1_clear_queues function in ssl/d1_lib.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h frees data structures without considering that application data can arrive between a ChangeCipherSpec message and a Finished message, which allows remote DTLS peers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via unexpected application data. | ||||
CVE-2016-2106 | 2 Openssl, Redhat | 13 Openssl, Enterprise Linux, Enterprise Linux Desktop and 10 more | 2025-04-12 | N/A |
Integer overflow in the EVP_EncryptUpdate function in crypto/evp/evp_enc.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of data. | ||||
CVE-2016-0703 | 2 Openssl, Redhat | 6 Openssl, Enterprise Linux, Rhel Aus and 3 more | 2025-04-12 | N/A |
The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | ||||
CVE-2014-0224 | 9 Fedoraproject, Filezilla-project, Mariadb and 6 more | 23 Fedora, Filezilla Server, Mariadb and 20 more | 2025-04-12 | 7.4 High |
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability. | ||||
CVE-2016-0704 | 2 Openssl, Redhat | 6 Openssl, Enterprise Linux, Rhel Aus and 3 more | 2025-04-12 | N/A |
An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800. | ||||
CVE-2014-0076 | 1 Openssl | 1 Openssl | 2025-04-12 | N/A |
The Montgomery ladder implementation in OpenSSL through 1.0.0l does not ensure that certain swap operations have a constant-time behavior, which makes it easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache side-channel attack. | ||||
CVE-2014-0198 | 7 Debian, Fedoraproject, Mariadb and 4 more | 11 Debian Linux, Fedora, Mariadb and 8 more | 2025-04-12 | N/A |
The do_ssl3_write function in s3_pkt.c in OpenSSL 1.x through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, does not properly manage a buffer pointer during certain recursive calls, which allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via vectors that trigger an alert condition. | ||||
CVE-2014-3470 | 6 Fedoraproject, Mariadb, Openssl and 3 more | 11 Fedora, Mariadb, Openssl and 8 more | 2025-04-12 | N/A |
The ssl3_send_client_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h, when an anonymous ECDH cipher suite is used, allows remote attackers to cause a denial of service (NULL pointer dereference and client crash) by triggering a NULL certificate value. | ||||
CVE-2014-3511 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Rhev Manager and 1 more | 2025-04-12 | N/A |
The ssl23_get_client_hello function in s23_srvr.c in OpenSSL 1.0.1 before 1.0.1i allows man-in-the-middle attackers to force the use of TLS 1.0 by triggering ClientHello message fragmentation in communication between a client and server that both support later TLS versions, related to a "protocol downgrade" issue. |