Filtered by vendor Nodejs
Subscriptions
Filtered by product Node.js
Subscriptions
Total
159 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2016-9841 | 9 Apple, Canonical, Debian and 6 more | 42 Iphone Os, Mac Os X, Tvos and 39 more | 2025-04-20 | 9.8 Critical |
inffast.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic. | ||||
CVE-2017-3731 | 3 Nodejs, Openssl, Redhat | 4 Node.js, Openssl, Enterprise Linux and 1 more | 2025-04-20 | 7.5 High |
If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k. | ||||
CVE-2017-3732 | 3 Nodejs, Openssl, Redhat | 5 Node.js, Openssl, Jboss Core Services and 2 more | 2025-04-20 | 5.9 Medium |
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem. | ||||
CVE-2016-9843 | 10 Apple, Canonical, Debian and 7 more | 27 Iphone Os, Mac Os X, Tvos and 24 more | 2025-04-20 | 9.8 Critical |
The crc32_big function in crc32.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact via vectors involving big-endian CRC calculation. | ||||
CVE-2013-7454 | 1 Nodejs | 1 Node.js | 2025-04-20 | N/A |
The validator module before 1.1.0 for Node.js allows remote attackers to bypass the cross-site scripting (XSS) filter via nested forbidden strings. | ||||
CVE-2014-9772 | 1 Nodejs | 1 Node.js | 2025-04-20 | N/A |
The validator package before 2.0.0 for Node.js allows remote attackers to bypass the cross-site scripting (XSS) filter via hex-encoded characters. | ||||
CVE-2015-5380 | 3 Google, Iojs, Nodejs | 3 V8, Io.js, Node.js | 2025-04-12 | N/A |
The Utf8DecoderBase::WriteUtf16Slow function in unicode-decoder.cc in Google V8, as used in Node.js before 0.12.6, io.js before 1.8.3 and 2.x before 2.3.3, and other products, does not verify that there is memory available for a UTF-16 surrogate pair, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a crafted byte sequence. | ||||
CVE-2016-7052 | 3 Nodejs, Novell, Openssl | 3 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl | 2025-04-12 | 7.5 High |
crypto/x509/x509_vfy.c in OpenSSL 1.0.2i allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) by triggering a CRL operation. | ||||
CVE-2016-2183 | 6 Cisco, Nodejs, Openssl and 3 more | 14 Content Security Management Appliance, Node.js, Openssl and 11 more | 2025-04-12 | 7.5 High |
The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack. | ||||
CVE-2016-2107 | 8 Canonical, Debian, Google and 5 more | 18 Ubuntu Linux, Debian Linux, Android and 15 more | 2025-04-12 | 5.9 Medium |
The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169. | ||||
CVE-2016-2105 | 8 Apple, Canonical, Debian and 5 more | 20 Mac Os X, Ubuntu Linux, Debian Linux and 17 more | 2025-04-12 | 7.5 High |
Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data. | ||||
CVE-2015-3193 | 3 Canonical, Nodejs, Openssl | 3 Ubuntu Linux, Node.js, Openssl | 2025-04-12 | 7.5 High |
The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite. | ||||
CVE-2014-0224 | 9 Fedoraproject, Filezilla-project, Mariadb and 6 more | 23 Fedora, Filezilla Server, Mariadb and 20 more | 2025-04-12 | 7.4 High |
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability. | ||||
CVE-2016-6303 | 2 Nodejs, Openssl | 2 Node.js, Openssl | 2025-04-12 | 9.8 Critical |
Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. | ||||
CVE-2013-6668 | 4 Debian, Google, Nodejs and 1 more | 7 Debian Linux, Chrome, V8 and 4 more | 2025-04-12 | N/A |
Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors. | ||||
CVE-2016-3956 | 3 Ibm, Nodejs, Npmjs | 3 Sdk, Node.js, Npm | 2025-04-12 | 7.5 High |
The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which allows remote HTTP servers to obtain sensitive information by reading Authorization headers. | ||||
CVE-2014-7191 | 2 Nodejs, Redhat | 2 Node.js, Rhel Software Collections | 2025-04-12 | N/A |
The qs module before 1.0.0 in Node.js does not call the compact function for array data, which allows remote attackers to cause a denial of service (memory consumption) by using a large index value to create a sparse array. | ||||
CVE-2016-2216 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-12 | N/A |
The HTTP header parsing code in Node.js 0.10.x before 0.10.42, 0.11.6 through 0.11.16, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allows remote attackers to bypass an HTTP response-splitting protection mechanism via UTF-8 encoded Unicode characters in the HTTP header, as demonstrated by %c4%8d%c4%8a. | ||||
CVE-2016-7099 | 3 Nodejs, Redhat, Suse | 3 Node.js, Rhel Software Collections, Linux Enterprise | 2025-04-12 | N/A |
The tls.checkServerIdentity function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 does not properly handle wildcards in name fields of X.509 certificates, which allows man-in-the-middle attackers to spoof servers via a crafted certificate. | ||||
CVE-2016-2086 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-12 | N/A |
Node.js 0.10.x before 0.10.42, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allow remote attackers to conduct HTTP request smuggling attacks via a crafted Content-Length HTTP header. |