Filtered by vendor Linux Subscriptions
Total 13540 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-39715 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Revise gateway LWS calls to probe user read access We use load and stbys,e instructions to trigger memory reference interruptions without writing to memory. Because of the way read access support is implemented, read access interruptions are only triggered at privilege levels 2 and 3. The kernel and gateway page execute at privilege level 0, so this code never triggers a read access interruption. Thus, it is currently possible for user code to execute a LWS compare and swap operation at an address that is read protected at privilege level 3 (PRIV_USER). Fix this by probing read access rights at privilege level 3 and branching to lws_fault if access isn't allowed.
CVE-2025-39714 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: usbtv: Lock resolution while streaming When an program is streaming (ffplay) and another program (qv4l2) changes the TV standard from NTSC to PAL, the kernel crashes due to trying to copy to unmapped memory. Changing from NTSC to PAL increases the resolution in the usbtv struct, but the video plane buffer isn't adjusted, so it overflows. [hverkuil: call vb2_is_busy instead of vb2_is_streaming]
CVE-2025-39713 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: rainshadow-cec: fix TOCTOU race condition in rain_interrupt() In the interrupt handler rain_interrupt(), the buffer full check on rain->buf_len is performed before acquiring rain->buf_lock. This creates a Time-of-Check to Time-of-Use (TOCTOU) race condition, as rain->buf_len is concurrently accessed and modified in the work handler rain_irq_work_handler() under the same lock. Multiple interrupt invocations can race, with each reading buf_len before it becomes full and then proceeding. This can lead to both interrupts attempting to write to the buffer, incrementing buf_len beyond its capacity (DATA_SIZE) and causing a buffer overflow. Fix this bug by moving the spin_lock() to before the buffer full check. This ensures that the check and the subsequent buffer modification are performed atomically, preventing the race condition. An corresponding spin_unlock() is added to the overflow path to correctly release the lock. This possible bug was found by an experimental static analysis tool developed by our team.
CVE-2025-39711 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: ivsc: Fix crash at shutdown due to missing mei_cldev_disable() calls Both the ACE and CSI driver are missing a mei_cldev_disable() call in their remove() function. This causes the mei_cl client to stay part of the mei_device->file_list list even though its memory is freed by mei_cl_bus_dev_release() calling kfree(cldev->cl). This leads to a use-after-free when mei_vsc_remove() runs mei_stop() which first removes all mei bus devices calling mei_ace_remove() and mei_csi_remove() followed by mei_cl_bus_dev_release() and then calls mei_cl_all_disconnect() which walks over mei_device->file_list dereferecing the just freed cldev->cl. And mei_vsc_remove() it self is run at shutdown because of the platform_device_unregister(tp->pdev) in vsc_tp_shutdown() When building a kernel with KASAN this leads to the following KASAN report: [ 106.634504] ================================================================== [ 106.634623] BUG: KASAN: slab-use-after-free in mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei [ 106.634683] Read of size 4 at addr ffff88819cb62018 by task systemd-shutdow/1 [ 106.634729] [ 106.634767] Tainted: [E]=UNSIGNED_MODULE [ 106.634770] Hardware name: Dell Inc. XPS 16 9640/09CK4V, BIOS 1.12.0 02/10/2025 [ 106.634773] Call Trace: [ 106.634777] <TASK> ... [ 106.634871] kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636) [ 106.634901] mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei [ 106.634921] mei_cl_all_disconnect (drivers/misc/mei/client.c:2165 (discriminator 4)) mei [ 106.634941] mei_reset (drivers/misc/mei/init.c:163) mei ... [ 106.635042] mei_stop (drivers/misc/mei/init.c:348) mei [ 106.635062] mei_vsc_remove (drivers/misc/mei/mei_dev.h:784 drivers/misc/mei/platform-vsc.c:393) mei_vsc [ 106.635066] platform_remove (drivers/base/platform.c:1424) Add the missing mei_cldev_disable() calls so that the mei_cl gets removed from mei_device->file_list before it is freed to fix this.
CVE-2025-39710 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access.
CVE-2025-39705 2 Amd, Linux 2 Graphics Driver, Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a Null pointer dereference vulnerability [Why] A null pointer dereference vulnerability exists in the AMD display driver's (DC module) cleanup function dc_destruct(). When display control context (dc->ctx) construction fails (due to memory allocation failure), this pointer remains NULL. During subsequent error handling when dc_destruct() is called, there's no NULL check before dereferencing the perf_trace member (dc->ctx->perf_trace), causing a kernel null pointer dereference crash. [How] Check if dc->ctx is non-NULL before dereferencing. (Updated commit text and removed unnecessary error message) (cherry picked from commit 9dd8e2ba268c636c240a918e0a31e6feaee19404)
CVE-2025-39704 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix stack protector issue in send_ipi_data() Function kvm_io_bus_read() is called in function send_ipi_data(), buffer size of parameter *val should be at least 8 bytes. Since some emulation functions like loongarch_ipi_readl() and kvm_eiointc_read() will write the buffer *val with 8 bytes signed extension regardless parameter len. Otherwise there will be buffer overflow issue when CONFIG_STACKPROTECTOR is enabled. The bug report is shown as follows: Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: send_ipi_data+0x194/0x1a0 [kvm] CPU: 11 UID: 107 PID: 2692 Comm: CPU 0/KVM Not tainted 6.17.0-rc1+ #102 PREEMPT(full) Stack : 9000000005901568 0000000000000000 9000000003af371c 900000013c68c000 900000013c68f850 900000013c68f858 0000000000000000 900000013c68f998 900000013c68f990 900000013c68f990 900000013c68f6c0 fffffffffffdb058 fffffffffffdb0e0 900000013c68f858 911e1d4d39cf0ec2 9000000105657a00 0000000000000001 fffffffffffffffe 0000000000000578 282049464555206e 6f73676e6f6f4c20 0000000000000001 00000000086b4000 0000000000000000 0000000000000000 0000000000000000 9000000005709968 90000000058f9000 900000013c68fa68 900000013c68fab4 90000000029279f0 900000010153f940 900000010001f360 0000000000000000 9000000003af3734 000000004390000c 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000003af3734>] show_stack+0x5c/0x180 [<9000000003aed168>] dump_stack_lvl+0x6c/0x9c [<9000000003ad0ab0>] vpanic+0x108/0x2c4 [<9000000003ad0ca8>] panic+0x3c/0x40 [<9000000004eb0a1c>] __stack_chk_fail+0x14/0x18 [<ffff8000023473f8>] send_ipi_data+0x190/0x1a0 [kvm] [<ffff8000023313e4>] __kvm_io_bus_write+0xa4/0xe8 [kvm] [<ffff80000233147c>] kvm_io_bus_write+0x54/0x90 [kvm] [<ffff80000233f9f8>] kvm_emu_iocsr+0x180/0x310 [kvm] [<ffff80000233fe08>] kvm_handle_gspr+0x280/0x478 [kvm] [<ffff8000023443e8>] kvm_handle_exit+0xc0/0x130 [kvm]
CVE-2025-39700 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/ops-common: ignore migration request to invalid nodes damon_migrate_pages() tries migration even if the target node is invalid. If users mistakenly make such invalid requests via DAMOS_MIGRATE_{HOT,COLD} action, the below kernel BUG can happen. [ 7831.883495] BUG: unable to handle page fault for address: 0000000000001f48 [ 7831.884160] #PF: supervisor read access in kernel mode [ 7831.884681] #PF: error_code(0x0000) - not-present page [ 7831.885203] PGD 0 P4D 0 [ 7831.885468] Oops: Oops: 0000 [#1] SMP PTI [ 7831.885852] CPU: 31 UID: 0 PID: 94202 Comm: kdamond.0 Not tainted 6.16.0-rc5-mm-new-damon+ #93 PREEMPT(voluntary) [ 7831.886913] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.el9 04/01/2014 [ 7831.887777] RIP: 0010:__alloc_frozen_pages_noprof (include/linux/mmzone.h:1724 include/linux/mmzone.h:1750 mm/page_alloc.c:4936 mm/page_alloc.c:5137) [...] [ 7831.895953] Call Trace: [ 7831.896195] <TASK> [ 7831.896397] __folio_alloc_noprof (mm/page_alloc.c:5183 mm/page_alloc.c:5192) [ 7831.896787] migrate_pages_batch (mm/migrate.c:1189 mm/migrate.c:1851) [ 7831.897228] ? __pfx_alloc_migration_target (mm/migrate.c:2137) [ 7831.897735] migrate_pages (mm/migrate.c:2078) [ 7831.898141] ? __pfx_alloc_migration_target (mm/migrate.c:2137) [ 7831.898664] damon_migrate_folio_list (mm/damon/ops-common.c:321 mm/damon/ops-common.c:354) [ 7831.899140] damon_migrate_pages (mm/damon/ops-common.c:405) [...] Add a target node validity check in damon_migrate_pages(). The validity check is stolen from that of do_pages_move(), which is being used for the move_pages() system call.
CVE-2025-39699 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/riscv: prevent NULL deref in iova_to_phys The riscv_iommu_pte_fetch() function returns either NULL for unmapped/never-mapped iova, or a valid leaf pte pointer that requires no further validation. riscv_iommu_iova_to_phys() failed to handle NULL returns. Prevent null pointer dereference in riscv_iommu_iova_to_phys(), and remove the pte validation.
CVE-2025-39698 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/futex: ensure io_futex_wait() cleans up properly on failure The io_futex_data is allocated upfront and assigned to the io_kiocb async_data field, but the request isn't marked with REQ_F_ASYNC_DATA at that point. Those two should always go together, as the flag tells io_uring whether the field is valid or not. Additionally, on failure cleanup, the futex handler frees the data but does not clear ->async_data. Clear the data and the flag in the error path as well. Thanks to Trend Micro Zero Day Initiative and particularly ReDress for reporting this.
CVE-2025-39695 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Flush delayed SKBs while releasing RXE resources When skb packets are sent out, these skb packets still depends on the rxe resources, for example, QP, sk, when these packets are destroyed. If these rxe resources are released when the skb packets are destroyed, the call traces will appear. To avoid skb packets hang too long time in some network devices, a timestamp is added when these skb packets are created. If these skb packets hang too long time in network devices, these network devices can free these skb packets to release rxe resources.
CVE-2025-39691 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs/buffer: fix use-after-free when call bh_read() helper There's issue as follows: BUG: KASAN: stack-out-of-bounds in end_buffer_read_sync+0xe3/0x110 Read of size 8 at addr ffffc9000168f7f8 by task swapper/3/0 CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.16.0-862.14.0.6.x86_64 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Call Trace: <IRQ> dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x2c/0x390 print_report+0xb4/0x270 kasan_report+0xb8/0xf0 end_buffer_read_sync+0xe3/0x110 end_bio_bh_io_sync+0x56/0x80 blk_update_request+0x30a/0x720 scsi_end_request+0x51/0x2b0 scsi_io_completion+0xe3/0x480 ? scsi_device_unbusy+0x11e/0x160 blk_complete_reqs+0x7b/0x90 handle_softirqs+0xef/0x370 irq_exit_rcu+0xa5/0xd0 sysvec_apic_timer_interrupt+0x6e/0x90 </IRQ> Above issue happens when do ntfs3 filesystem mount, issue may happens as follows: mount IRQ ntfs_fill_super read_cache_page do_read_cache_folio filemap_read_folio mpage_read_folio do_mpage_readpage ntfs_get_block_vbo bh_read submit_bh wait_on_buffer(bh); blk_complete_reqs scsi_io_completion scsi_end_request blk_update_request end_bio_bh_io_sync end_buffer_read_sync __end_buffer_read_notouch unlock_buffer wait_on_buffer(bh);--> return will return to caller put_bh --> trigger stack-out-of-bounds In the mpage_read_folio() function, the stack variable 'map_bh' is passed to ntfs_get_block_vbo(). Once unlock_buffer() unlocks and wait_on_buffer() returns to continue processing, the stack variable is likely to be reclaimed. Consequently, during the end_buffer_read_sync() process, calling put_bh() may result in stack overrun. If the bh is not allocated on the stack, it belongs to a folio. Freeing a buffer head which belongs to a folio is done by drop_buffers() which will fail to free buffers which are still locked. So it is safe to call put_bh() before __end_buffer_read_notouch().
CVE-2025-39686 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: comedi: Make insn_rw_emulate_bits() do insn->n samples The `insn_rw_emulate_bits()` function is used as a default handler for `INSN_READ` instructions for subdevices that have a handler for `INSN_BITS` but not for `INSN_READ`. Similarly, it is used as a default handler for `INSN_WRITE` instructions for subdevices that have a handler for `INSN_BITS` but not for `INSN_WRITE`. It works by emulating the `INSN_READ` or `INSN_WRITE` instruction handling with a constructed `INSN_BITS` instruction. However, `INSN_READ` and `INSN_WRITE` instructions are supposed to be able read or write multiple samples, indicated by the `insn->n` value, but `insn_rw_emulate_bits()` currently only handles a single sample. For `INSN_READ`, the comedi core will copy `insn->n` samples back to user-space. (That triggered KASAN kernel-infoleak errors when `insn->n` was greater than 1, but that is being fixed more generally elsewhere in the comedi core.) Make `insn_rw_emulate_bits()` either handle `insn->n` samples, or return an error, to conform to the general expectation for `INSN_READ` and `INSN_WRITE` handlers.
CVE-2025-39684 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl() syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel buffer is allocated to hold `insn->n` samples (each of which is an `unsigned int`). For some instruction types, `insn->n` samples are copied back to user-space, unless an error code is being returned. The problem is that not all the instruction handlers that need to return data to userspace fill in the whole `insn->n` samples, so that there is an information leak. There is a similar syzbot report for `do_insnlist_ioctl()`, although it does not have a reproducer for it at the time of writing. One culprit is `insn_rw_emulate_bits()` which is used as the handler for `INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have a specific handler for that instruction, but do have an `INSN_BITS` handler. For `INSN_READ` it only fills in at most 1 sample, so if `insn->n` is greater than 1, the remaining `insn->n - 1` samples copied to userspace will be uninitialized kernel data. Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It never returns an error, even if it fails to fill the buffer. Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure that uninitialized parts of the allocated buffer are zeroed before handling each instruction. Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not always necessary to clear the whole buffer.
CVE-2025-39683 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Limit access to parser->buffer when trace_get_user failed When the length of the string written to set_ftrace_filter exceeds FTRACE_BUFF_MAX, the following KASAN alarm will be triggered: BUG: KASAN: slab-out-of-bounds in strsep+0x18c/0x1b0 Read of size 1 at addr ffff0000d00bd5ba by task ash/165 CPU: 1 UID: 0 PID: 165 Comm: ash Not tainted 6.16.0-g6bcdbd62bd56-dirty Hardware name: linux,dummy-virt (DT) Call trace: show_stack+0x34/0x50 (C) dump_stack_lvl+0xa0/0x158 print_address_description.constprop.0+0x88/0x398 print_report+0xb0/0x280 kasan_report+0xa4/0xf0 __asan_report_load1_noabort+0x20/0x30 strsep+0x18c/0x1b0 ftrace_process_regex.isra.0+0x100/0x2d8 ftrace_regex_release+0x484/0x618 __fput+0x364/0xa58 ____fput+0x28/0x40 task_work_run+0x154/0x278 do_notify_resume+0x1f0/0x220 el0_svc+0xec/0xf0 el0t_64_sync_handler+0xa0/0xe8 el0t_64_sync+0x1ac/0x1b0 The reason is that trace_get_user will fail when processing a string longer than FTRACE_BUFF_MAX, but not set the end of parser->buffer to 0. Then an OOB access will be triggered in ftrace_regex_release-> ftrace_process_regex->strsep->strpbrk. We can solve this problem by limiting access to parser->buffer when trace_get_user failed.
CVE-2025-39682 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tls: fix handling of zero-length records on the rx_list Each recvmsg() call must process either - only contiguous DATA records (any number of them) - one non-DATA record If the next record has different type than what has already been processed we break out of the main processing loop. If the record has already been decrypted (which may be the case for TLS 1.3 where we don't know type until decryption) we queue the pending record to the rx_list. Next recvmsg() will pick it up from there. Queuing the skb to rx_list after zero-copy decrypt is not possible, since in that case we decrypted directly to the user space buffer, and we don't have an skb to queue (darg.skb points to the ciphertext skb for access to metadata like length). Only data records are allowed zero-copy, and we break the processing loop after each non-data record. So we should never zero-copy and then find out that the record type has changed. The corner case we missed is when the initial record comes from rx_list, and it's zero length.
CVE-2025-39681 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/cpu/hygon: Add missing resctrl_cpu_detect() in bsp_init helper Since 923f3a2b48bd ("x86/resctrl: Query LLC monitoring properties once during boot") resctrl_cpu_detect() has been moved from common CPU initialization code to the vendor-specific BSP init helper, while Hygon didn't put that call in their code. This triggers a division by zero fault during early booting stage on our machines with X86_FEATURE_CQM* supported, where get_rdt_mon_resources() tries to calculate mon_l3_config with uninitialized boot_cpu_data.x86_cache_occ_scale. Add the missing resctrl_cpu_detect() in the Hygon BSP init helper. [ bp: Massage commit message. ]
CVE-2025-39680 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: Fix out-of-bounds bug in rtl9300_i2c_smbus_xfer The data->block[0] variable comes from user. Without proper check, the variable may be very large to cause an out-of-bounds bug. Fix this bug by checking the value of data->block[0] first. 1. commit 39244cc75482 ("i2c: ismt: Fix an out-of-bounds bug in ismt_access()") 2. commit 92fbb6d1296f ("i2c: xgene-slimpro: Fix out-of-bounds bug in xgene_slimpro_i2c_xfer()")
CVE-2025-39678 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd/hsmp: Ensure sock->metric_tbl_addr is non-NULL If metric table address is not allocated, accessing metrics_bin will result in a NULL pointer dereference, so add a check.
CVE-2025-39677 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: Fix backlog accounting in qdisc_dequeue_internal This issue applies for the following qdiscs: hhf, fq, fq_codel, and fq_pie, and occurs in their change handlers when adjusting to the new limit. The problem is the following in the values passed to the subsequent qdisc_tree_reduce_backlog call given a tbf parent: When the tbf parent runs out of tokens, skbs of these qdiscs will be placed in gso_skb. Their peek handlers are qdisc_peek_dequeued, which accounts for both qlen and backlog. However, in the case of qdisc_dequeue_internal, ONLY qlen is accounted for when pulling from gso_skb. This means that these qdiscs are missing a qdisc_qstats_backlog_dec when dropping packets to satisfy the new limit in their change handlers. One can observe this issue with the following (with tc patched to support a limit of 0): export TARGET=fq tc qdisc del dev lo root tc qdisc add dev lo root handle 1: tbf rate 8bit burst 100b latency 1ms tc qdisc replace dev lo handle 3: parent 1:1 $TARGET limit 1000 echo ''; echo 'add child'; tc -s -d qdisc show dev lo ping -I lo -f -c2 -s32 -W0.001 127.0.0.1 2>&1 >/dev/null echo ''; echo 'after ping'; tc -s -d qdisc show dev lo tc qdisc change dev lo handle 3: parent 1:1 $TARGET limit 0 echo ''; echo 'after limit drop'; tc -s -d qdisc show dev lo tc qdisc replace dev lo handle 2: parent 1:1 sfq echo ''; echo 'post graft'; tc -s -d qdisc show dev lo The second to last show command shows 0 packets but a positive number (74) of backlog bytes. The problem becomes clearer in the last show command, where qdisc_purge_queue triggers qdisc_tree_reduce_backlog with the positive backlog and causes an underflow in the tbf parent's backlog (4096 Mb instead of 0). To fix this issue, the codepath for all clients of qdisc_dequeue_internal has been simplified: codel, pie, hhf, fq, fq_pie, and fq_codel. qdisc_dequeue_internal handles the backlog adjustments for all cases that do not directly use the dequeue handler. The old fq_codel_change limit adjustment loop accumulated the arguments to the subsequent qdisc_tree_reduce_backlog call through the cstats field. However, this is confusing and error prone as fq_codel_dequeue could also potentially mutate this field (which qdisc_dequeue_internal calls in the non gso_skb case), so we have unified the code here with other qdiscs.