Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 13446 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-39682 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tls: fix handling of zero-length records on the rx_list Each recvmsg() call must process either - only contiguous DATA records (any number of them) - one non-DATA record If the next record has different type than what has already been processed we break out of the main processing loop. If the record has already been decrypted (which may be the case for TLS 1.3 where we don't know type until decryption) we queue the pending record to the rx_list. Next recvmsg() will pick it up from there. Queuing the skb to rx_list after zero-copy decrypt is not possible, since in that case we decrypted directly to the user space buffer, and we don't have an skb to queue (darg.skb points to the ciphertext skb for access to metadata like length). Only data records are allowed zero-copy, and we break the processing loop after each non-data record. So we should never zero-copy and then find out that the record type has changed. The corner case we missed is when the initial record comes from rx_list, and it's zero length.
CVE-2025-39719 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iio: imu: bno055: fix OOB access of hw_xlate array Fix a potential out-of-bounds array access of the hw_xlate array in bno055.c. In bno055_get_regmask(), hw_xlate was iterated over the length of the vals array instead of the length of the hw_xlate array. In the case of bno055_gyr_scale, the vals array is larger than the hw_xlate array, so this could result in an out-of-bounds access. In practice, this shouldn't happen though because a match should always be found which breaks out of the for loop before it iterates beyond the end of the hw_xlate array. By adding a new hw_xlate_len field to the bno055_sysfs_attr, we can be sure we are iterating over the correct length.
CVE-2025-39674 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: ufs-qcom: Fix ESI null pointer dereference ESI/MSI is a performance optimization feature that provides dedicated interrupts per MCQ hardware queue. This is optional feature and UFS MCQ should work with and without ESI feature. Commit e46a28cea29a ("scsi: ufs: qcom: Remove the MSI descriptor abuse") brings a regression in ESI (Enhanced System Interrupt) configuration that causes a null pointer dereference when Platform MSI allocation fails. The issue occurs in when platform_device_msi_init_and_alloc_irqs() in ufs_qcom_config_esi() fails (returns -EINVAL) but the current code uses __free() macro for automatic cleanup free MSI resources that were never successfully allocated. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 Call trace: mutex_lock+0xc/0x54 (P) platform_device_msi_free_irqs_all+0x1c/0x40 ufs_qcom_config_esi+0x1d0/0x220 [ufs_qcom] ufshcd_config_mcq+0x28/0x104 ufshcd_init+0xa3c/0xf40 ufshcd_pltfrm_init+0x504/0x7d4 ufs_qcom_probe+0x20/0x58 [ufs_qcom] Fix by restructuring the ESI configuration to try MSI allocation first, before any other resource allocation and instead use explicit cleanup instead of __free() macro to avoid cleanup of unallocated resources. Tested on SM8750 platform with MCQ enabled, both with and without Platform ESI support.
CVE-2025-39693 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid a NULL pointer dereference [WHY] Although unlikely drm_atomic_get_new_connector_state() or drm_atomic_get_old_connector_state() can return NULL. [HOW] Check returns before dereference. (cherry picked from commit 1e5e8d672fec9f2ab352be121be971877bff2af9)
CVE-2025-39733 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: team: replace team lock with rtnl lock syszbot reports various ordering issues for lower instance locks and team lock. Switch to using rtnl lock for protecting team device, similar to bonding. Based on the patch by Tetsuo Handa.
CVE-2025-39714 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: usbtv: Lock resolution while streaming When an program is streaming (ffplay) and another program (qv4l2) changes the TV standard from NTSC to PAL, the kernel crashes due to trying to copy to unmapped memory. Changing from NTSC to PAL increases the resolution in the usbtv struct, but the video plane buffer isn't adjusted, so it overflows. [hverkuil: call vb2_is_busy instead of vb2_is_streaming]
CVE-2025-39721 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - flush misc workqueue during device shutdown Repeated loading and unloading of a device specific QAT driver, for example qat_4xxx, in a tight loop can lead to a crash due to a use-after-free scenario. This occurs when a power management (PM) interrupt triggers just before the device-specific driver (e.g., qat_4xxx.ko) is unloaded, while the core driver (intel_qat.ko) remains loaded. Since the driver uses a shared workqueue (`qat_misc_wq`) across all devices and owned by intel_qat.ko, a deferred routine from the device-specific driver may still be pending in the queue. If this routine executes after the driver is unloaded, it can dereference freed memory, resulting in a page fault and kernel crash like the following: BUG: unable to handle page fault for address: ffa000002e50a01c #PF: supervisor read access in kernel mode RIP: 0010:pm_bh_handler+0x1d2/0x250 [intel_qat] Call Trace: pm_bh_handler+0x1d2/0x250 [intel_qat] process_one_work+0x171/0x340 worker_thread+0x277/0x3a0 kthread+0xf0/0x120 ret_from_fork+0x2d/0x50 To prevent this, flush the misc workqueue during device shutdown to ensure that all pending work items are completed before the driver is unloaded. Note: This approach may slightly increase shutdown latency if the workqueue contains jobs from other devices, but it ensures correctness and stability.
CVE-2025-39703 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net, hsr: reject HSR frame if skb can't hold tag Receiving HSR frame with insufficient space to hold HSR tag in the skb can result in a crash (kernel BUG): [ 45.390915] skbuff: skb_under_panic: text:ffffffff86f32cac len:26 put:14 head:ffff888042418000 data:ffff888042417ff4 tail:0xe end:0x180 dev:bridge_slave_1 [ 45.392559] ------------[ cut here ]------------ [ 45.392912] kernel BUG at net/core/skbuff.c:211! [ 45.393276] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI [ 45.393809] CPU: 1 UID: 0 PID: 2496 Comm: reproducer Not tainted 6.15.0 #12 PREEMPT(undef) [ 45.394433] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 45.395273] RIP: 0010:skb_panic+0x15b/0x1d0 <snip registers, remove unreliable trace> [ 45.402911] Call Trace: [ 45.403105] <IRQ> [ 45.404470] skb_push+0xcd/0xf0 [ 45.404726] br_dev_queue_push_xmit+0x7c/0x6c0 [ 45.406513] br_forward_finish+0x128/0x260 [ 45.408483] __br_forward+0x42d/0x590 [ 45.409464] maybe_deliver+0x2eb/0x420 [ 45.409763] br_flood+0x174/0x4a0 [ 45.410030] br_handle_frame_finish+0xc7c/0x1bc0 [ 45.411618] br_handle_frame+0xac3/0x1230 [ 45.413674] __netif_receive_skb_core.constprop.0+0x808/0x3df0 [ 45.422966] __netif_receive_skb_one_core+0xb4/0x1f0 [ 45.424478] __netif_receive_skb+0x22/0x170 [ 45.424806] process_backlog+0x242/0x6d0 [ 45.425116] __napi_poll+0xbb/0x630 [ 45.425394] net_rx_action+0x4d1/0xcc0 [ 45.427613] handle_softirqs+0x1a4/0x580 [ 45.427926] do_softirq+0x74/0x90 [ 45.428196] </IRQ> This issue was found by syzkaller. The panic happens in br_dev_queue_push_xmit() once it receives a corrupted skb with ETH header already pushed in linear data. When it attempts the skb_push() call, there's not enough headroom and skb_push() panics. The corrupted skb is put on the queue by HSR layer, which makes a sequence of unintended transformations when it receives a specific corrupted HSR frame (with incomplete TAG). Fix it by dropping and consuming frames that are not long enough to contain both ethernet and hsr headers. Alternative fix would be to check for enough headroom before skb_push() in br_dev_queue_push_xmit(). In the reproducer, this is injected via AF_PACKET, but I don't easily see why it couldn't be sent over the wire from adjacent network. Further Details: In the reproducer, the following network interface chain is set up: ┌────────────────┐ ┌────────────────┐ │ veth0_to_hsr ├───┤ hsr_slave0 ┼───┐ └────────────────┘ └────────────────┘ │ │ ┌──────┐ ├─┤ hsr0 ├───┐ │ └──────┘ │ ┌────────────────┐ ┌────────────────┐ │ │┌────────┐ │ veth1_to_hsr ┼───┤ hsr_slave1 ├───┘ └┤ │ └────────────────┘ └────────────────┘ ┌┼ bridge │ ││ │ │└────────┘ │ ┌───────┐ │ │ ... ├──────┘ └───────┘ To trigger the events leading up to crash, reproducer sends a corrupted HSR fr ---truncated---
CVE-2025-39730 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix filehandle bounds checking in nfs_fh_to_dentry() The function needs to check the minimal filehandle length before it can access the embedded filehandle.
CVE-2025-39722 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: caam - Prevent crash on suspend with iMX8QM / iMX8ULP Since the CAAM on these SoCs is managed by another ARM core, called the SECO (Security Controller) on iMX8QM and Secure Enclave on iMX8ULP, which also reserves access to register page 0 suspend operations cannot touch this page. This is similar to when running OPTEE, where OPTEE will reserve page 0. Track this situation using a new state variable no_page0, reflecting if page 0 is reserved elsewhere, either by other management cores in SoC or by OPTEE. Replace the optee_en check in suspend/resume with the new check. optee_en cannot go away as it's needed elsewhere to gate OPTEE specific situations. Fixes the following splat at suspend: Internal error: synchronous external abort: 0000000096000010 [#1] SMP Hardware name: Freescale i.MX8QXP ACU6C (DT) pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : readl+0x0/0x18 lr : rd_reg32+0x18/0x3c sp : ffffffc08192ba20 x29: ffffffc08192ba20 x28: ffffff8025190000 x27: 0000000000000000 x26: ffffffc0808ae808 x25: ffffffc080922338 x24: ffffff8020e89090 x23: 0000000000000000 x22: ffffffc080922000 x21: ffffff8020e89010 x20: ffffffc080387ef8 x19: ffffff8020e89010 x18: 000000005d8000d5 x17: 0000000030f35963 x16: 000000008f785f3f x15: 000000003b8ef57c x14: 00000000c418aef8 x13: 00000000f5fea526 x12: 0000000000000001 x11: 0000000000000002 x10: 0000000000000001 x9 : 0000000000000000 x8 : ffffff8025190870 x7 : ffffff8021726880 x6 : 0000000000000002 x5 : ffffff80217268f0 x4 : ffffff8021726880 x3 : ffffffc081200000 x2 : 0000000000000001 x1 : ffffff8020e89010 x0 : ffffffc081200004 Call trace: readl+0x0/0x18 caam_ctrl_suspend+0x30/0xdc dpm_run_callback.constprop.0+0x24/0x5c device_suspend+0x170/0x2e8 dpm_suspend+0xa0/0x104 dpm_suspend_start+0x48/0x50 suspend_devices_and_enter+0x7c/0x45c pm_suspend+0x148/0x160 state_store+0xb4/0xf8 kobj_attr_store+0x14/0x24 sysfs_kf_write+0x38/0x48 kernfs_fop_write_iter+0xb4/0x178 vfs_write+0x118/0x178 ksys_write+0x6c/0xd0 __arm64_sys_write+0x14/0x1c invoke_syscall.constprop.0+0x64/0xb0 do_el0_svc+0x90/0xb0 el0_svc+0x18/0x44 el0t_64_sync_handler+0x88/0x124 el0t_64_sync+0x150/0x154 Code: 88dffc21 88dffc21 5ac00800 d65f03c0 (b9400000)
CVE-2025-39713 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: rainshadow-cec: fix TOCTOU race condition in rain_interrupt() In the interrupt handler rain_interrupt(), the buffer full check on rain->buf_len is performed before acquiring rain->buf_lock. This creates a Time-of-Check to Time-of-Use (TOCTOU) race condition, as rain->buf_len is concurrently accessed and modified in the work handler rain_irq_work_handler() under the same lock. Multiple interrupt invocations can race, with each reading buf_len before it becomes full and then proceeding. This can lead to both interrupts attempting to write to the buffer, incrementing buf_len beyond its capacity (DATA_SIZE) and causing a buffer overflow. Fix this bug by moving the spin_lock() to before the buffer full check. This ensures that the check and the subsequent buffer modification are performed atomically, preventing the race condition. An corresponding spin_unlock() is added to the overflow path to correctly release the lock. This possible bug was found by an experimental static analysis tool developed by our team.
CVE-2025-39679 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/nvif: Fix potential memory leak in nvif_vmm_ctor(). When the nvif_vmm_type is invalid, we will return error directly without freeing the args in nvif_vmm_ctor(), which leading a memory leak. Fix it by setting the ret -EINVAL and goto done.
CVE-2025-39729 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: ccp - Fix dereferencing uninitialized error pointer Fix below smatch warnings: drivers/crypto/ccp/sev-dev.c:1312 __sev_platform_init_locked() error: we previously assumed 'error' could be null
CVE-2025-39699 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/riscv: prevent NULL deref in iova_to_phys The riscv_iommu_pte_fetch() function returns either NULL for unmapped/never-mapped iova, or a valid leaf pte pointer that requires no further validation. riscv_iommu_iova_to_phys() failed to handle NULL returns. Prevent null pointer dereference in riscv_iommu_iova_to_phys(), and remove the pte validation.
CVE-2025-39700 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/ops-common: ignore migration request to invalid nodes damon_migrate_pages() tries migration even if the target node is invalid. If users mistakenly make such invalid requests via DAMOS_MIGRATE_{HOT,COLD} action, the below kernel BUG can happen. [ 7831.883495] BUG: unable to handle page fault for address: 0000000000001f48 [ 7831.884160] #PF: supervisor read access in kernel mode [ 7831.884681] #PF: error_code(0x0000) - not-present page [ 7831.885203] PGD 0 P4D 0 [ 7831.885468] Oops: Oops: 0000 [#1] SMP PTI [ 7831.885852] CPU: 31 UID: 0 PID: 94202 Comm: kdamond.0 Not tainted 6.16.0-rc5-mm-new-damon+ #93 PREEMPT(voluntary) [ 7831.886913] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.el9 04/01/2014 [ 7831.887777] RIP: 0010:__alloc_frozen_pages_noprof (include/linux/mmzone.h:1724 include/linux/mmzone.h:1750 mm/page_alloc.c:4936 mm/page_alloc.c:5137) [...] [ 7831.895953] Call Trace: [ 7831.896195] <TASK> [ 7831.896397] __folio_alloc_noprof (mm/page_alloc.c:5183 mm/page_alloc.c:5192) [ 7831.896787] migrate_pages_batch (mm/migrate.c:1189 mm/migrate.c:1851) [ 7831.897228] ? __pfx_alloc_migration_target (mm/migrate.c:2137) [ 7831.897735] migrate_pages (mm/migrate.c:2078) [ 7831.898141] ? __pfx_alloc_migration_target (mm/migrate.c:2137) [ 7831.898664] damon_migrate_folio_list (mm/damon/ops-common.c:321 mm/damon/ops-common.c:354) [ 7831.899140] damon_migrate_pages (mm/damon/ops-common.c:405) [...] Add a target node validity check in damon_migrate_pages(). The validity check is stolen from that of do_pages_move(), which is being used for the move_pages() system call.
CVE-2025-39710 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access.
CVE-2025-39705 2 Amd, Linux 2 Graphics Driver, Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a Null pointer dereference vulnerability [Why] A null pointer dereference vulnerability exists in the AMD display driver's (DC module) cleanup function dc_destruct(). When display control context (dc->ctx) construction fails (due to memory allocation failure), this pointer remains NULL. During subsequent error handling when dc_destruct() is called, there's no NULL check before dereferencing the perf_trace member (dc->ctx->perf_trace), causing a kernel null pointer dereference crash. [How] Check if dc->ctx is non-NULL before dereferencing. (Updated commit text and removed unnecessary error message) (cherry picked from commit 9dd8e2ba268c636c240a918e0a31e6feaee19404)
CVE-2025-39691 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs/buffer: fix use-after-free when call bh_read() helper There's issue as follows: BUG: KASAN: stack-out-of-bounds in end_buffer_read_sync+0xe3/0x110 Read of size 8 at addr ffffc9000168f7f8 by task swapper/3/0 CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.16.0-862.14.0.6.x86_64 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Call Trace: <IRQ> dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x2c/0x390 print_report+0xb4/0x270 kasan_report+0xb8/0xf0 end_buffer_read_sync+0xe3/0x110 end_bio_bh_io_sync+0x56/0x80 blk_update_request+0x30a/0x720 scsi_end_request+0x51/0x2b0 scsi_io_completion+0xe3/0x480 ? scsi_device_unbusy+0x11e/0x160 blk_complete_reqs+0x7b/0x90 handle_softirqs+0xef/0x370 irq_exit_rcu+0xa5/0xd0 sysvec_apic_timer_interrupt+0x6e/0x90 </IRQ> Above issue happens when do ntfs3 filesystem mount, issue may happens as follows: mount IRQ ntfs_fill_super read_cache_page do_read_cache_folio filemap_read_folio mpage_read_folio do_mpage_readpage ntfs_get_block_vbo bh_read submit_bh wait_on_buffer(bh); blk_complete_reqs scsi_io_completion scsi_end_request blk_update_request end_bio_bh_io_sync end_buffer_read_sync __end_buffer_read_notouch unlock_buffer wait_on_buffer(bh);--> return will return to caller put_bh --> trigger stack-out-of-bounds In the mpage_read_folio() function, the stack variable 'map_bh' is passed to ntfs_get_block_vbo(). Once unlock_buffer() unlocks and wait_on_buffer() returns to continue processing, the stack variable is likely to be reclaimed. Consequently, during the end_buffer_read_sync() process, calling put_bh() may result in stack overrun. If the bh is not allocated on the stack, it belongs to a folio. Freeing a buffer head which belongs to a folio is done by drop_buffers() which will fail to free buffers which are still locked. So it is safe to call put_bh() before __end_buffer_read_notouch().
CVE-2025-39686 1 Linux 1 Linux Kernel 2025-09-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: comedi: Make insn_rw_emulate_bits() do insn->n samples The `insn_rw_emulate_bits()` function is used as a default handler for `INSN_READ` instructions for subdevices that have a handler for `INSN_BITS` but not for `INSN_READ`. Similarly, it is used as a default handler for `INSN_WRITE` instructions for subdevices that have a handler for `INSN_BITS` but not for `INSN_WRITE`. It works by emulating the `INSN_READ` or `INSN_WRITE` instruction handling with a constructed `INSN_BITS` instruction. However, `INSN_READ` and `INSN_WRITE` instructions are supposed to be able read or write multiple samples, indicated by the `insn->n` value, but `insn_rw_emulate_bits()` currently only handles a single sample. For `INSN_READ`, the comedi core will copy `insn->n` samples back to user-space. (That triggered KASAN kernel-infoleak errors when `insn->n` was greater than 1, but that is being fixed more generally elsewhere in the comedi core.) Make `insn_rw_emulate_bits()` either handle `insn->n` samples, or return an error, to conform to the general expectation for `INSN_READ` and `INSN_WRITE` handlers.
CVE-2025-39683 1 Linux 1 Linux Kernel 2025-09-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Limit access to parser->buffer when trace_get_user failed When the length of the string written to set_ftrace_filter exceeds FTRACE_BUFF_MAX, the following KASAN alarm will be triggered: BUG: KASAN: slab-out-of-bounds in strsep+0x18c/0x1b0 Read of size 1 at addr ffff0000d00bd5ba by task ash/165 CPU: 1 UID: 0 PID: 165 Comm: ash Not tainted 6.16.0-g6bcdbd62bd56-dirty Hardware name: linux,dummy-virt (DT) Call trace: show_stack+0x34/0x50 (C) dump_stack_lvl+0xa0/0x158 print_address_description.constprop.0+0x88/0x398 print_report+0xb0/0x280 kasan_report+0xa4/0xf0 __asan_report_load1_noabort+0x20/0x30 strsep+0x18c/0x1b0 ftrace_process_regex.isra.0+0x100/0x2d8 ftrace_regex_release+0x484/0x618 __fput+0x364/0xa58 ____fput+0x28/0x40 task_work_run+0x154/0x278 do_notify_resume+0x1f0/0x220 el0_svc+0xec/0xf0 el0t_64_sync_handler+0xa0/0xe8 el0t_64_sync+0x1ac/0x1b0 The reason is that trace_get_user will fail when processing a string longer than FTRACE_BUFF_MAX, but not set the end of parser->buffer to 0. Then an OOB access will be triggered in ftrace_regex_release-> ftrace_process_regex->strsep->strpbrk. We can solve this problem by limiting access to parser->buffer when trace_get_user failed.