Filtered by vendor Netapp
Subscriptions
Filtered by product Active Iq Unified Manager
Subscriptions
Total
828 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-1473 | 3 Netapp, Openssl, Redhat | 44 A250, A250 Firmware, A700s and 41 more | 2025-05-05 | 7.5 High |
The OPENSSL_LH_flush() function, which empties a hash table, contains a bug that breaks reuse of the memory occuppied by the removed hash table entries. This function is used when decoding certificates or keys. If a long lived process periodically decodes certificates or keys its memory usage will expand without bounds and the process might be terminated by the operating system causing a denial of service. Also traversing the empty hash table entries will take increasingly more time. Typically such long lived processes might be TLS clients or TLS servers configured to accept client certificate authentication. The function was added in the OpenSSL 3.0 version thus older releases are not affected by the issue. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). | ||||
CVE-2022-1343 | 3 Netapp, Openssl, Redhat | 44 A250, A250 Firmware, A700s and 41 more | 2025-05-05 | 5.3 Medium |
The function `OCSP_basic_verify` verifies the signer certificate on an OCSP response. In the case where the (non-default) flag OCSP_NOCHECKS is used then the response will be positive (meaning a successful verification) even in the case where the response signing certificate fails to verify. It is anticipated that most users of `OCSP_basic_verify` will not use the OCSP_NOCHECKS flag. In this case the `OCSP_basic_verify` function will return a negative value (indicating a fatal error) in the case of a certificate verification failure. The normal expected return value in this case would be 0. This issue also impacts the command line OpenSSL "ocsp" application. When verifying an ocsp response with the "-no_cert_checks" option the command line application will report that the verification is successful even though it has in fact failed. In this case the incorrect successful response will also be accompanied by error messages showing the failure and contradicting the apparently successful result. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). | ||||
CVE-2022-1292 | 6 Debian, Fedoraproject, Netapp and 3 more | 57 Debian Linux, Fedora, A250 and 54 more | 2025-05-05 | 9.8 Critical |
The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd). | ||||
CVE-2021-46143 | 5 Libexpat Project, Netapp, Redhat and 2 more | 10 Libexpat, Active Iq Unified Manager, Clustered Data Ontap and 7 more | 2025-05-05 | 8.1 High |
In doProlog in xmlparse.c in Expat (aka libexpat) before 2.4.3, an integer overflow exists for m_groupSize. | ||||
CVE-2021-45960 | 6 Debian, Libexpat Project, Netapp and 3 more | 10 Debian Linux, Libexpat, Active Iq Unified Manager and 7 more | 2025-05-05 | 8.8 High |
In Expat (aka libexpat) before 2.4.3, a left shift by 29 (or more) places in the storeAtts function in xmlparse.c can lead to realloc misbehavior (e.g., allocating too few bytes, or only freeing memory). | ||||
CVE-2022-36946 | 4 Debian, Linux, Netapp and 1 more | 10 Debian Linux, Linux Kernel, Active Iq Unified Manager and 7 more | 2025-05-05 | 7.5 High |
nfqnl_mangle in net/netfilter/nfnetlink_queue.c in the Linux kernel through 5.18.14 allows remote attackers to cause a denial of service (panic) because, in the case of an nf_queue verdict with a one-byte nfta_payload attribute, an skb_pull can encounter a negative skb->len. | ||||
CVE-2022-36879 | 4 Debian, Linux, Netapp and 1 more | 46 Debian Linux, Linux Kernel, A700s and 43 more | 2025-05-05 | 5.5 Medium |
An issue was discovered in the Linux kernel through 5.18.14. xfrm_expand_policies in net/xfrm/xfrm_policy.c can cause a refcount to be dropped twice. | ||||
CVE-2024-26641 | 4 Debian, Linux, Netapp and 1 more | 25 Debian Linux, Linux Kernel, A150 and 22 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: make sure to pull inner header in __ip6_tnl_rcv() syzbot found __ip6_tnl_rcv() could access unitiliazed data [1]. Call pskb_inet_may_pull() to fix this, and initialize ipv6h variable after this call as it can change skb->head. [1] BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7df/0x1e50 include/net/inet_ecn.h:321 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP6_ECN_decapsulate+0x7df/0x1e50 include/net/inet_ecn.h:321 ip6ip6_dscp_ecn_decapsulate+0x178/0x1b0 net/ipv6/ip6_tunnel.c:727 __ip6_tnl_rcv+0xd4e/0x1590 net/ipv6/ip6_tunnel.c:845 ip6_tnl_rcv+0xce/0x100 net/ipv6/ip6_tunnel.c:888 gre_rcv+0x143f/0x1870 ip6_protocol_deliver_rcu+0xda6/0x2a60 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:461 [inline] ip6_rcv_finish+0x5db/0x870 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xda/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5532 [inline] __netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5646 netif_receive_skb_internal net/core/dev.c:5732 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5791 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1555 tun_get_user+0x53af/0x66d0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2084 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0x786/0x1200 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560 __alloc_skb+0x318/0x740 net/core/skbuff.c:651 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787 tun_alloc_skb drivers/net/tun.c:1531 [inline] tun_get_user+0x1e8a/0x66d0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2084 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0x786/0x1200 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b CPU: 0 PID: 5034 Comm: syz-executor331 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 | ||||
CVE-2023-40745 | 4 Fedoraproject, Libtiff, Netapp and 1 more | 4 Fedora, Libtiff, Active Iq Unified Manager and 1 more | 2025-05-01 | 6.5 Medium |
LibTIFF is vulnerable to an integer overflow. This flaw allows remote attackers to cause a denial of service (application crash) or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow. | ||||
CVE-2022-43945 | 3 Linux, Netapp, Redhat | 14 Linux Kernel, Active Iq Unified Manager, H300s and 11 more | 2025-05-01 | 7.5 High |
The Linux kernel NFSD implementation prior to versions 5.19.17 and 6.0.2 are vulnerable to buffer overflow. NFSD tracks the number of pages held by each NFSD thread by combining the receive and send buffers of a remote procedure call (RPC) into a single array of pages. A client can force the send buffer to shrink by sending an RPC message over TCP with garbage data added at the end of the message. The RPC message with garbage data is still correctly formed according to the specification and is passed forward to handlers. Vulnerable code in NFSD is not expecting the oversized request and writes beyond the allocated buffer space. CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H | ||||
CVE-2021-35942 | 4 Debian, Gnu, Netapp and 1 more | 8 Debian Linux, Glibc, Active Iq Unified Manager and 5 more | 2025-05-01 | 9.1 Critical |
The wordexp function in the GNU C Library (aka glibc) through 2.33 may crash or read arbitrary memory in parse_param (in posix/wordexp.c) when called with an untrusted, crafted pattern, potentially resulting in a denial of service or disclosure of information. This occurs because atoi was used but strtoul should have been used to ensure correct calculations. | ||||
CVE-2022-45061 | 4 Fedoraproject, Netapp, Python and 1 more | 13 Fedora, Active Iq Unified Manager, Bootstrap Os and 10 more | 2025-05-01 | 7.5 High |
An issue was discovered in Python before 3.11.1. An unnecessary quadratic algorithm exists in one path when processing some inputs to the IDNA (RFC 3490) decoder, such that a crafted, unreasonably long name being presented to the decoder could lead to a CPU denial of service. Hostnames are often supplied by remote servers that could be controlled by a malicious actor; in such a scenario, they could trigger excessive CPU consumption on the client attempting to make use of an attacker-supplied supposed hostname. For example, the attack payload could be placed in the Location header of an HTTP response with status code 302. A fix is planned in 3.11.1, 3.10.9, 3.9.16, 3.8.16, and 3.7.16. | ||||
CVE-2020-14061 | 5 Debian, Fasterxml, Netapp and 2 more | 20 Debian Linux, Jackson-databind, Active Iq Unified Manager and 17 more | 2025-05-01 | 8.1 High |
FasterXML jackson-databind 2.x before 2.9.10.5 mishandles the interaction between serialization gadgets and typing, related to oracle.jms.AQjmsQueueConnectionFactory, oracle.jms.AQjmsXATopicConnectionFactory, oracle.jms.AQjmsTopicConnectionFactory, oracle.jms.AQjmsXAQueueConnectionFactory, and oracle.jms.AQjmsXAConnectionFactory (aka weblogic/oracle-aqjms). | ||||
CVE-2021-20190 | 6 Apache, Debian, Fasterxml and 3 more | 10 Nifi, Debian Linux, Jackson-databind and 7 more | 2025-05-01 | 8.1 High |
A flaw was found in jackson-databind before 2.9.10.7. FasterXML mishandles the interaction between serialization gadgets and typing. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. | ||||
CVE-2020-36518 | 5 Debian, Fasterxml, Netapp and 2 more | 48 Debian Linux, Jackson-databind, Active Iq Unified Manager and 45 more | 2025-05-01 | 7.5 High |
jackson-databind before 2.13.0 allows a Java StackOverflow exception and denial of service via a large depth of nested objects. | ||||
CVE-2023-38545 | 5 Fedoraproject, Haxx, Microsoft and 2 more | 19 Fedora, Libcurl, Windows 10 1809 and 16 more | 2025-05-01 | 8.8 High |
This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy handshake. When curl is asked to pass along the host name to the SOCKS5 proxy to allow that to resolve the address instead of it getting done by curl itself, the maximum length that host name can be is 255 bytes. If the host name is detected to be longer, curl switches to local name resolving and instead passes on the resolved address only. Due to this bug, the local variable that means "let the host resolve the name" could get the wrong value during a slow SOCKS5 handshake, and contrary to the intention, copy the too long host name to the target buffer instead of copying just the resolved address there. The target buffer being a heap based buffer, and the host name coming from the URL that curl has been told to operate with. | ||||
CVE-2021-22931 | 5 Netapp, Nodejs, Oracle and 2 more | 13 Active Iq Unified Manager, Nextgen Api, Oncommand Insight and 10 more | 2025-04-30 | 9.8 Critical |
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library. | ||||
CVE-2021-22884 | 6 Fedoraproject, Netapp, Nodejs and 3 more | 16 Fedora, Active Iq Unified Manager, E-series Performance Analyzer and 13 more | 2025-04-30 | 7.5 High |
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160. | ||||
CVE-2023-4813 | 4 Fedoraproject, Gnu, Netapp and 1 more | 23 Fedora, Glibc, Active Iq Unified Manager and 20 more | 2025-04-30 | 5.9 Medium |
A flaw was found in glibc. In an uncommon situation, the gaih_inet function may use memory that has been freed, resulting in an application crash. This issue is only exploitable when the getaddrinfo function is called and the hosts database in /etc/nsswitch.conf is configured with SUCCESS=continue or SUCCESS=merge. | ||||
CVE-2022-40303 | 4 Apple, Netapp, Redhat and 1 more | 25 Ipados, Iphone Os, Macos and 22 more | 2025-04-29 | 7.5 High |
An issue was discovered in libxml2 before 2.10.3. When parsing a multi-gigabyte XML document with the XML_PARSE_HUGE parser option enabled, several integer counters can overflow. This results in an attempt to access an array at a negative 2GB offset, typically leading to a segmentation fault. |