Filtered by vendor Linux
Subscriptions
Total
16535 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49585 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_fastopen_blackhole_timeout. While reading sysctl_tcp_fastopen_blackhole_timeout, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
| CVE-2022-49583 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iavf: Fix handling of dummy receive descriptors Fix memory leak caused by not handling dummy receive descriptor properly. iavf_get_rx_buffer now sets the rx_buffer return value for dummy receive descriptors. Without this patch, when the hardware writes a dummy descriptor, iavf would not free the page allocated for the previous receive buffer. This is an unlikely event but can still happen. [Jesse: massaged commit message] | ||||
| CVE-2022-49582 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix NULL pointer dereference in dsa_port_reset_vlan_filtering The "ds" iterator variable used in dsa_port_reset_vlan_filtering() -> dsa_switch_for_each_port() overwrites the "dp" received as argument, which is later used to call dsa_port_vlan_filtering() proper. As a result, switches which do enter that code path (the ones with vlan_filtering_is_global=true) will dereference an invalid dp in dsa_port_reset_vlan_filtering() after leaving a VLAN-aware bridge. Use a dedicated "other_dp" iterator variable to avoid this from happening. | ||||
| CVE-2022-49580 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_multipath_use_neigh. While reading sysctl_fib_multipath_use_neigh, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader. | ||||
| CVE-2022-49579 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_policy. While reading sysctl_fib_multipath_hash_policy, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
| CVE-2022-49578 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_prot_sock. sysctl_ip_prot_sock is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. | ||||
| CVE-2022-49577 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: udp: Fix a data-race around sysctl_udp_l3mdev_accept. While reading sysctl_udp_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader. | ||||
| CVE-2022-49576 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_fields. While reading sysctl_fib_multipath_hash_fields, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
| CVE-2022-49575 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_thin_linear_timeouts. While reading sysctl_tcp_thin_linear_timeouts, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader. | ||||
| CVE-2022-49574 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_recovery. While reading sysctl_tcp_recovery, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
| CVE-2022-49573 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_early_retrans. While reading sysctl_tcp_early_retrans, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader. | ||||
| CVE-2022-49572 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_slow_start_after_idle. While reading sysctl_tcp_slow_start_after_idle, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
| CVE-2022-49571 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_max_reordering. While reading sysctl_tcp_max_reordering, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
| CVE-2022-49570 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: gpio: gpio-xilinx: Fix integer overflow Current implementation is not able to configure more than 32 pins due to incorrect data type. So type casting with unsigned long to avoid it. | ||||
| CVE-2022-49569 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: spi: bcm2835: bcm2835_spi_handle_err(): fix NULL pointer deref for non DMA transfers In case a IRQ based transfer times out the bcm2835_spi_handle_err() function is called. Since commit 1513ceee70f2 ("spi: bcm2835: Drop dma_pending flag") the TX and RX DMA transfers are unconditionally canceled, leading to NULL pointer derefs if ctlr->dma_tx or ctlr->dma_rx are not set. Fix the NULL pointer deref by checking that ctlr->dma_tx and ctlr->dma_rx are valid pointers before accessing them. | ||||
| CVE-2022-49568 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: Don't null dereference ops->destroy A KVM device cleanup happens in either of two callbacks: 1) destroy() which is called when the VM is being destroyed; 2) release() which is called when a device fd is closed. Most KVM devices use 1) but Book3s's interrupt controller KVM devices (XICS, XIVE, XIVE-native) use 2) as they need to close and reopen during the machine execution. The error handling in kvm_ioctl_create_device() assumes destroy() is always defined which leads to NULL dereference as discovered by Syzkaller. This adds a checks for destroy!=NULL and adds a missing release(). This is not changing kvm_destroy_devices() as devices with defined release() should have been removed from the KVM devices list by then. | ||||
| CVE-2022-49566 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: crypto: qat - fix memory leak in RSA When an RSA key represented in form 2 (as defined in PKCS #1 V2.1) is used, some components of the private key persist even after the TFM is released. Replace the explicit calls to free the buffers in qat_rsa_exit_tfm() with a call to qat_rsa_clear_ctx() which frees all buffers referenced in the TFM context. | ||||
| CVE-2022-49563 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: crypto: qat - add param check for RSA Reject requests with a source buffer that is bigger than the size of the key. This is to prevent a possible integer underflow that might happen when copying the source scatterlist into a linear buffer. | ||||
| CVE-2022-49560 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: exfat: check if cluster num is valid Syzbot reported slab-out-of-bounds read in exfat_clear_bitmap. This was triggered by reproducer calling truncute with size 0, which causes the following trace: BUG: KASAN: slab-out-of-bounds in exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174 Read of size 8 at addr ffff888115aa9508 by task syz-executor251/365 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack_lvl+0x1e2/0x24b lib/dump_stack.c:118 print_address_description+0x81/0x3c0 mm/kasan/report.c:233 __kasan_report mm/kasan/report.c:419 [inline] kasan_report+0x1a4/0x1f0 mm/kasan/report.c:436 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:309 exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174 exfat_free_cluster+0x25a/0x4a0 fs/exfat/fatent.c:181 __exfat_truncate+0x99e/0xe00 fs/exfat/file.c:217 exfat_truncate+0x11b/0x4f0 fs/exfat/file.c:243 exfat_setattr+0xa03/0xd40 fs/exfat/file.c:339 notify_change+0xb76/0xe10 fs/attr.c:336 do_truncate+0x1ea/0x2d0 fs/open.c:65 Move the is_valid_cluster() helper from fatent.c to a common header to make it reusable in other *.c files. And add is_valid_cluster() to validate if cluster number is within valid range in exfat_clear_bitmap() and exfat_set_bitmap(). | ||||
| CVE-2022-49551 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: usb: isp1760: Fix out-of-bounds array access Running the driver through kasan gives an interesting splat: BUG: KASAN: global-out-of-bounds in isp1760_register+0x180/0x70c Read of size 20 at addr f1db2e64 by task swapper/0/1 (...) isp1760_register from isp1760_plat_probe+0x1d8/0x220 (...) This happens because the loop reading the regmap fields for the different ISP1760 variants look like this: for (i = 0; i < HC_FIELD_MAX; i++) { ... } Meaning it expects the arrays to be at least HC_FIELD_MAX - 1 long. However the arrays isp1760_hc_reg_fields[], isp1763_hc_reg_fields[], isp1763_hc_volatile_ranges[] and isp1763_dc_volatile_ranges[] are dynamically sized during compilation. Fix this by putting an empty assignment to the [HC_FIELD_MAX] and [DC_FIELD_MAX] array member at the end of each array. This will make the array one member longer than it needs to be, but avoids the risk of overwriting whatever is inside [HC_FIELD_MAX - 1] and is simple and intuitive to read. Also add comments explaining what is going on. | ||||