Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
13317 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2025-39774 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: iio: adc: rzg2l_adc: Set driver data before enabling runtime PM When stress-testing the system by repeatedly unbinding and binding the ADC device in a loop, and the ADC is a supplier for another device (e.g., a thermal hardware block that reads temperature through the ADC), it may happen that the ADC device is runtime-resumed immediately after runtime PM is enabled, triggered by its consumer. At this point, since drvdata is not yet set and the driver's runtime PM callbacks rely on it, a crash can occur. To avoid this, set drvdata just after it was allocated. | ||||
CVE-2025-39759 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, resulting in a use-after-free. Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config(). Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas were already disabled. | ||||
CVE-2025-39776 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm/debug_vm_pgtable: clear page table entries at destroy_args() The mm/debug_vm_pagetable test allocates manually page table entries for the tests it runs, using also its manually allocated mm_struct. That in itself is ok, but when it exits, at destroy_args() it fails to clear those entries with the *_clear functions. The problem is that leaves stale entries. If another process allocates an mm_struct with a pgd at the same address, it may end up running into the stale entry. This is happening in practice on a debug kernel with CONFIG_DEBUG_VM_PGTABLE=y, for example this is the output with some extra debugging I added (it prints a warning trace if pgtables_bytes goes negative, in addition to the warning at check_mm() function): [ 2.539353] debug_vm_pgtable: [get_random_vaddr ]: random_vaddr is 0x7ea247140000 [ 2.539366] kmem_cache info [ 2.539374] kmem_cachep 0x000000002ce82385 - freelist 0x0000000000000000 - offset 0x508 [ 2.539447] debug_vm_pgtable: [init_args ]: args->mm is 0x000000002267cc9e (...) [ 2.552800] WARNING: CPU: 5 PID: 116 at include/linux/mm.h:2841 free_pud_range+0x8bc/0x8d0 [ 2.552816] Modules linked in: [ 2.552843] CPU: 5 UID: 0 PID: 116 Comm: modprobe Not tainted 6.12.0-105.debug_vm2.el10.ppc64le+debug #1 VOLUNTARY [ 2.552859] Hardware name: IBM,9009-41A POWER9 (architected) 0x4e0202 0xf000005 of:IBM,FW910.00 (VL910_062) hv:phyp pSeries [ 2.552872] NIP: c0000000007eef3c LR: c0000000007eef30 CTR: c0000000003d8c90 [ 2.552885] REGS: c0000000622e73b0 TRAP: 0700 Not tainted (6.12.0-105.debug_vm2.el10.ppc64le+debug) [ 2.552899] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24002822 XER: 0000000a [ 2.552954] CFAR: c0000000008f03f0 IRQMASK: 0 [ 2.552954] GPR00: c0000000007eef30 c0000000622e7650 c000000002b1ac00 0000000000000001 [ 2.552954] GPR04: 0000000000000008 0000000000000000 c0000000007eef30 ffffffffffffffff [ 2.552954] GPR08: 00000000ffff00f5 0000000000000001 0000000000000048 0000000000004000 [ 2.552954] GPR12: 00000003fa440000 c000000017ffa300 c0000000051d9f80 ffffffffffffffdb [ 2.552954] GPR16: 0000000000000000 0000000000000008 000000000000000a 60000000000000e0 [ 2.552954] GPR20: 4080000000000000 c0000000113af038 00007fffcf130000 0000700000000000 [ 2.552954] GPR24: c000000062a6a000 0000000000000001 8000000062a68000 0000000000000001 [ 2.552954] GPR28: 000000000000000a c000000062ebc600 0000000000002000 c000000062ebc760 [ 2.553170] NIP [c0000000007eef3c] free_pud_range+0x8bc/0x8d0 [ 2.553185] LR [c0000000007eef30] free_pud_range+0x8b0/0x8d0 [ 2.553199] Call Trace: [ 2.553207] [c0000000622e7650] [c0000000007eef30] free_pud_range+0x8b0/0x8d0 (unreliable) [ 2.553229] [c0000000622e7750] [c0000000007f40b4] free_pgd_range+0x284/0x3b0 [ 2.553248] [c0000000622e7800] [c0000000007f4630] free_pgtables+0x450/0x570 [ 2.553274] [c0000000622e78e0] [c0000000008161c0] exit_mmap+0x250/0x650 [ 2.553292] [c0000000622e7a30] [c0000000001b95b8] __mmput+0x98/0x290 [ 2.558344] [c0000000622e7a80] [c0000000001d1018] exit_mm+0x118/0x1b0 [ 2.558361] [c0000000622e7ac0] [c0000000001d141c] do_exit+0x2ec/0x870 [ 2.558376] [c0000000622e7b60] [c0000000001d1ca8] do_group_exit+0x88/0x150 [ 2.558391] [c0000000622e7bb0] [c0000000001d1db8] sys_exit_group+0x48/0x50 [ 2.558407] [c0000000622e7be0] [c00000000003d810] system_call_exception+0x1e0/0x4c0 [ 2.558423] [c0000000622e7e50] [c00000000000d05c] system_call_vectored_common+0x15c/0x2ec (...) [ 2.558892] ---[ end trace 0000000000000000 ]--- [ 2.559022] BUG: Bad rss-counter state mm:000000002267cc9e type:MM_ANONPAGES val:1 [ 2.559037] BUG: non-zero pgtables_bytes on freeing mm: -6144 Here the modprobe process ended up with an allocated mm_struct from the mm_struct slab that was used before by the debug_vm_pgtable test. That is not a problem, since the mm_stru ---truncated--- | ||||
CVE-2025-39751 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda/ca0132: Fix buffer overflow in add_tuning_control The 'sprintf' call in 'add_tuning_control' may exceed the 44-byte buffer if either string argument is too long. This triggers a compiler warning. Replaced 'sprintf' with 'snprintf' to limit string lengths to prevent overflow. | ||||
CVE-2025-39777 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: crypto: acomp - Fix CFI failure due to type punning To avoid a crash when control flow integrity is enabled, make the workspace ("stream") free function use a consistent type, and call it through a function pointer that has that same type. | ||||
CVE-2025-39739 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu-qcom: Add SM6115 MDSS compatible Add the SM6115 MDSS compatible to clients compatible list, as it also needs that workaround. Without this workaround, for example, QRB4210 RB2 which is based on SM4250/SM6115 generates a lot of smmu unhandled context faults during boot: arm_smmu_context_fault: 116854 callbacks suppressed arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402, iova=0x5c0ec600, fsynr=0x320021, cbfrsynra=0x420, cb=5 arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420 arm-smmu c600000.iommu: FSYNR0 = 00320021 [S1CBNDX=50 PNU PLVL=1] arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402, iova=0x5c0d7800, fsynr=0x320021, cbfrsynra=0x420, cb=5 arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420 and also failed initialisation of lontium lt9611uxc, gpu and dpu is observed: (binding MDSS components triggered by lt9611uxc have failed) ------------[ cut here ]------------ !aspace WARNING: CPU: 6 PID: 324 at drivers/gpu/drm/msm/msm_gem_vma.c:130 msm_gem_vma_init+0x150/0x18c [msm] Modules linked in: ... (long list of modules) CPU: 6 UID: 0 PID: 324 Comm: (udev-worker) Not tainted 6.15.0-03037-gaacc73ceeb8b #4 PREEMPT Hardware name: Qualcomm Technologies, Inc. QRB4210 RB2 (DT) pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : msm_gem_vma_init+0x150/0x18c [msm] lr : msm_gem_vma_init+0x150/0x18c [msm] sp : ffff80008144b280 ... Call trace: msm_gem_vma_init+0x150/0x18c [msm] (P) get_vma_locked+0xc0/0x194 [msm] msm_gem_get_and_pin_iova_range+0x4c/0xdc [msm] msm_gem_kernel_new+0x48/0x160 [msm] msm_gpu_init+0x34c/0x53c [msm] adreno_gpu_init+0x1b0/0x2d8 [msm] a6xx_gpu_init+0x1e8/0x9e0 [msm] adreno_bind+0x2b8/0x348 [msm] component_bind_all+0x100/0x230 msm_drm_bind+0x13c/0x3d0 [msm] try_to_bring_up_aggregate_device+0x164/0x1d0 __component_add+0xa4/0x174 component_add+0x14/0x20 dsi_dev_attach+0x20/0x34 [msm] dsi_host_attach+0x58/0x98 [msm] devm_mipi_dsi_attach+0x34/0x90 lt9611uxc_attach_dsi.isra.0+0x94/0x124 [lontium_lt9611uxc] lt9611uxc_probe+0x540/0x5fc [lontium_lt9611uxc] i2c_device_probe+0x148/0x2a8 really_probe+0xbc/0x2c0 __driver_probe_device+0x78/0x120 driver_probe_device+0x3c/0x154 __driver_attach+0x90/0x1a0 bus_for_each_dev+0x68/0xb8 driver_attach+0x24/0x30 bus_add_driver+0xe4/0x208 driver_register+0x68/0x124 i2c_register_driver+0x48/0xcc lt9611uxc_driver_init+0x20/0x1000 [lontium_lt9611uxc] do_one_initcall+0x60/0x1d4 do_init_module+0x54/0x1fc load_module+0x1748/0x1c8c init_module_from_file+0x74/0xa0 __arm64_sys_finit_module+0x130/0x2f8 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x2c/0x80 el0t_64_sync_handler+0x10c/0x138 el0t_64_sync+0x198/0x19c ---[ end trace 0000000000000000 ]--- msm_dpu 5e01000.display-controller: [drm:msm_gpu_init [msm]] *ERROR* could not allocate memptrs: -22 msm_dpu 5e01000.display-controller: failed to load adreno gpu platform a400000.remoteproc:glink-edge:apr:service@7:dais: Adding to iommu group 19 msm_dpu 5e01000.display-controller: failed to bind 5900000.gpu (ops a3xx_ops [msm]): -22 msm_dpu 5e01000.display-controller: adev bind failed: -22 lt9611uxc 0-002b: failed to attach dsi to host lt9611uxc 0-002b: probe with driver lt9611uxc failed with error -22 | ||||
CVE-2025-39766 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: net/sched: Make cake_enqueue return NET_XMIT_CN when past buffer_limit The following setup can trigger a WARNING in htb_activate due to the condition: !cl->leaf.q->q.qlen tc qdisc del dev lo root tc qdisc add dev lo root handle 1: htb default 1 tc class add dev lo parent 1: classid 1:1 \ htb rate 64bit tc qdisc add dev lo parent 1:1 handle f: \ cake memlimit 1b ping -I lo -f -c1 -s64 -W0.001 127.0.0.1 This is because the low memlimit leads to a low buffer_limit, which causes packet dropping. However, cake_enqueue still returns NET_XMIT_SUCCESS, causing htb_enqueue to call htb_activate with an empty child qdisc. We should return NET_XMIT_CN when packets are dropped from the same tin and flow. I do not believe return value of NET_XMIT_CN is necessary for packet drops in the case of ack filtering, as that is meant to optimize performance, not to signal congestion. | ||||
CVE-2025-39764 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: ctnetlink: remove refcounting in expectation dumpers Same pattern as previous patch: do not keep the expectation object alive via refcount, only store a cookie value and then use that as the skip hint for dump resumption. AFAICS this has the same issue as the one resolved in the conntrack dumper, when we do if (!refcount_inc_not_zero(&exp->use)) to increment the refcount, there is a chance that exp == last, which causes a double-increment of the refcount and subsequent memory leak. | ||||
CVE-2025-39757 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Validate UAC3 cluster segment descriptors UAC3 class segment descriptors need to be verified whether their sizes match with the declared lengths and whether they fit with the allocated buffer sizes, too. Otherwise malicious firmware may lead to the unexpected OOB accesses. | ||||
CVE-2025-39765 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: ALSA: timer: fix ida_free call while not allocated In the snd_utimer_create() function, if the kasprintf() function return NULL, snd_utimer_put_id() will be called, finally use ida_free() to free the unallocated id 0. the syzkaller reported the following information: ------------[ cut here ]------------ ida_free called for id=0 which is not allocated. WARNING: CPU: 1 PID: 1286 at lib/idr.c:592 ida_free+0x1fd/0x2f0 lib/idr.c:592 Modules linked in: CPU: 1 UID: 0 PID: 1286 Comm: syz-executor164 Not tainted 6.15.8 #3 PREEMPT(lazy) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014 RIP: 0010:ida_free+0x1fd/0x2f0 lib/idr.c:592 Code: f8 fc 41 83 fc 3e 76 69 e8 70 b2 f8 (...) RSP: 0018:ffffc900007f79c8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 1ffff920000fef3b RCX: ffffffff872176a5 RDX: ffff88800369d200 RSI: 0000000000000000 RDI: ffff88800369d200 RBP: 0000000000000000 R08: ffffffff87ba60a5 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000002 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6f1abc1740(0000) GS:ffff8880d76a0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6f1ad7a784 CR3: 000000007a6e2000 CR4: 00000000000006f0 Call Trace: <TASK> snd_utimer_put_id sound/core/timer.c:2043 [inline] [snd_timer] snd_utimer_create+0x59b/0x6a0 sound/core/timer.c:2184 [snd_timer] snd_utimer_ioctl_create sound/core/timer.c:2202 [inline] [snd_timer] __snd_timer_user_ioctl.isra.0+0x724/0x1340 sound/core/timer.c:2287 [snd_timer] snd_timer_user_ioctl+0x75/0xc0 sound/core/timer.c:2298 [snd_timer] vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __x64_sys_ioctl+0x198/0x200 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0x7b/0x160 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x76/0x7e [...] The utimer->id should be set properly before the kasprintf() function, ensures the snd_utimer_put_id() function will free the allocated id. | ||||
CVE-2025-39761 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Decrement TID on RX peer frag setup error handling Currently, TID is not decremented before peer cleanup, during error handling path of ath12k_dp_rx_peer_frag_setup(). This could lead to out-of-bounds access in peer->rx_tid[]. Hence, add a decrement operation for TID, before peer cleanup to ensures proper cleanup and prevents out-of-bounds access issues when the RX peer frag setup fails. Found during code review. Compile tested only. | ||||
CVE-2025-39754 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm/smaps: fix race between smaps_hugetlb_range and migration smaps_hugetlb_range() handles the pte without holdling ptl, and may be concurrenct with migration, leaing to BUG_ON in pfn_swap_entry_to_page(). The race is as follows. smaps_hugetlb_range migrate_pages huge_ptep_get remove_migration_ptes folio_unlock pfn_swap_entry_folio BUG_ON To fix it, hold ptl lock in smaps_hugetlb_range(). | ||||
CVE-2025-39752 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ARM: rockchip: fix kernel hang during smp initialization In order to bring up secondary CPUs main CPU write trampoline code to SRAM. The trampoline code is written while secondary CPUs are powered on (at least that true for RK3188 CPU). Sometimes that leads to kernel hang. Probably because secondary CPU execute trampoline code while kernel doesn't expect. The patch moves SRAM initialization step to the point where all secondary CPUs are powered down. That fixes rarely hangs on RK3188: [ 0.091568] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000 [ 0.091996] rockchip_smp_prepare_cpus: ncores 4 | ||||
CVE-2025-39749 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: rcu: Protect ->defer_qs_iw_pending from data race On kernels built with CONFIG_IRQ_WORK=y, when rcu_read_unlock() is invoked within an interrupts-disabled region of code [1], it will invoke rcu_read_unlock_special(), which uses an irq-work handler to force the system to notice when the RCU read-side critical section actually ends. That end won't happen until interrupts are enabled at the soonest. In some kernels, such as those booted with rcutree.use_softirq=y, the irq-work handler is used unconditionally. The per-CPU rcu_data structure's ->defer_qs_iw_pending field is updated by the irq-work handler and is both read and updated by rcu_read_unlock_special(). This resulted in the following KCSAN splat: ------------------------------------------------------------------------ BUG: KCSAN: data-race in rcu_preempt_deferred_qs_handler / rcu_read_unlock_special read to 0xffff96b95f42d8d8 of 1 bytes by task 90 on cpu 8: rcu_read_unlock_special+0x175/0x260 __rcu_read_unlock+0x92/0xa0 rt_spin_unlock+0x9b/0xc0 __local_bh_enable+0x10d/0x170 __local_bh_enable_ip+0xfb/0x150 rcu_do_batch+0x595/0xc40 rcu_cpu_kthread+0x4e9/0x830 smpboot_thread_fn+0x24d/0x3b0 kthread+0x3bd/0x410 ret_from_fork+0x35/0x40 ret_from_fork_asm+0x1a/0x30 write to 0xffff96b95f42d8d8 of 1 bytes by task 88 on cpu 8: rcu_preempt_deferred_qs_handler+0x1e/0x30 irq_work_single+0xaf/0x160 run_irq_workd+0x91/0xc0 smpboot_thread_fn+0x24d/0x3b0 kthread+0x3bd/0x410 ret_from_fork+0x35/0x40 ret_from_fork_asm+0x1a/0x30 no locks held by irq_work/8/88. irq event stamp: 200272 hardirqs last enabled at (200272): [<ffffffffb0f56121>] finish_task_switch+0x131/0x320 hardirqs last disabled at (200271): [<ffffffffb25c7859>] __schedule+0x129/0xd70 softirqs last enabled at (0): [<ffffffffb0ee093f>] copy_process+0x4df/0x1cc0 softirqs last disabled at (0): [<0000000000000000>] 0x0 ------------------------------------------------------------------------ The problem is that irq-work handlers run with interrupts enabled, which means that rcu_preempt_deferred_qs_handler() could be interrupted, and that interrupt handler might contain an RCU read-side critical section, which might invoke rcu_read_unlock_special(). In the strict KCSAN mode of operation used by RCU, this constitutes a data race on the ->defer_qs_iw_pending field. This commit therefore disables interrupts across the portion of the rcu_preempt_deferred_qs_handler() that updates the ->defer_qs_iw_pending field. This suffices because this handler is not a fast path. | ||||
CVE-2025-39748 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: bpf: Forget ranges when refining tnum after JSET Syzbot reported a kernel warning due to a range invariant violation on the following BPF program. 0: call bpf_get_netns_cookie 1: if r0 == 0 goto <exit> 2: if r0 & Oxffffffff goto <exit> The issue is on the path where we fall through both jumps. That path is unreachable at runtime: after insn 1, we know r0 != 0, but with the sign extension on the jset, we would only fallthrough insn 2 if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to figure this out, so the verifier walks all branches. The verifier then refines the register bounds using the second condition and we end up with inconsistent bounds on this unreachable path: 1: if r0 == 0 goto <exit> r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff) 2: if r0 & 0xffffffff goto <exit> r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0) r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0) Improving the range refinement for JSET to cover all cases is tricky. We also don't expect many users to rely on JSET given LLVM doesn't generate those instructions. So instead of improving the range refinement for JSETs, Eduard suggested we forget the ranges whenever we're narrowing tnums after a JSET. This patch implements that approach. | ||||
CVE-2025-39745 | 1 Linux | 1 Linux Kernel | 2025-09-15 | N/A |
In the Linux kernel, the following vulnerability has been resolved: rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture tests resulted in the following splat: [ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0 [ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture] [ 68.797601] Call Trace: [ 68.797602] <TASK> [ 68.797619] ? lockdep_softirqs_off+0xa5/0x160 [ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797646] ? local_clock+0x19/0x40 [ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797815] rcu-torture: rcu_torture_reader task started [ 68.797824] rcu-torture: Creating rcu_torture_reader task [ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797836] ? kvm_sched_clock_read+0x15/0x30 Disable BH does not change the SOFTIRQ corresponding bits in preempt_count() for RT kernels, this commit therefore use softirq_count() to check the if BH is disabled. | ||||
CVE-2025-39744 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: rcu: Fix rcu_read_unlock() deadloop due to IRQ work During rcu_read_unlock_special(), if this happens during irq_exit(), we can lockup if an IPI is issued. This is because the IPI itself triggers the irq_exit() path causing a recursive lock up. This is precisely what Xiongfeng found when invoking a BPF program on the trace_tick_stop() tracepoint As shown in the trace below. Fix by managing the irq_work state correctly. irq_exit() __irq_exit_rcu() /* in_hardirq() returns false after this */ preempt_count_sub(HARDIRQ_OFFSET) tick_irq_exit() tick_nohz_irq_exit() tick_nohz_stop_sched_tick() trace_tick_stop() /* a bpf prog is hooked on this trace point */ __bpf_trace_tick_stop() bpf_trace_run2() rcu_read_unlock_special() /* will send a IPI to itself */ irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); A simple reproducer can also be obtained by doing the following in tick_irq_exit(). It will hang on boot without the patch: static inline void tick_irq_exit(void) { + rcu_read_lock(); + WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); + rcu_read_unlock(); + [neeraj: Apply Frederic's suggested fix for PREEMPT_RT] | ||||
CVE-2025-39743 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: jfs: truncate good inode pages when hard link is 0 The fileset value of the inode copy from the disk by the reproducer is AGGR_RESERVED_I. When executing evict, its hard link number is 0, so its inode pages are not truncated. This causes the bugon to be triggered when executing clear_inode() because nrpages is greater than 0. | ||||
CVE-2025-39740 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/xe/migrate: prevent potential UAF If we hit the error path, the previous fence (if there is one) has already been put() prior to this, so doing a fence_wait could lead to UAF. Tweak the flow to do to the put() until after we do the wait. (cherry picked from commit 9b7ca35ed28fe5fad86e9d9c24ebd1271e4c9c3e) | ||||
CVE-2025-39742 | 1 Linux | 1 Linux Kernel | 2025-09-15 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: RDMA: hfi1: fix possible divide-by-zero in find_hw_thread_mask() The function divides number of online CPUs by num_core_siblings, and later checks the divider by zero. This implies a possibility to get and divide-by-zero runtime error. Fix it by moving the check prior to division. This also helps to save one indentation level. |