Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Eus Subscriptions
Total 3019 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-4304 3 Openssl, Redhat, Stormshield 8 Openssl, Enterprise Linux, Jboss Core Services and 5 more 2025-11-04 5.9 Medium
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection.
CVE-2022-4203 2 Openssl, Redhat 3 Openssl, Enterprise Linux, Rhel Eus 2025-11-04 4.9 Medium
A read buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. The read buffer overrun might result in a crash which could lead to a denial of service attack. In theory it could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext) although we are not aware of any working exploit leading to memory contents disclosure as of the time of release of this advisory. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects.
CVE-2020-25687 4 Debian, Fedoraproject, Redhat and 1 more 5 Debian Linux, Fedora, Enterprise Linux and 2 more 2025-11-04 5.9 Medium
A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. This flaw allows a remote attacker, who can create valid DNS replies, to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in sort_rrset() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
CVE-2020-25686 5 Arista, Debian, Fedoraproject and 2 more 10 Eos, Debian Linux, Fedora and 7 more 2025-11-04 3.7 Low
A flaw was found in dnsmasq before version 2.83. When receiving a query, dnsmasq does not check for an existing pending request for the same name and forwards a new request. By default, a maximum of 150 pending queries can be sent to upstream servers, so there can be at most 150 queries for the same name. This flaw allows an off-path attacker on the network to substantially reduce the number of attempts that it would have to perform to forge a reply and have it accepted by dnsmasq. This issue is mentioned in the "Birthday Attacks" section of RFC5452. If chained with CVE-2020-25684, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity.
CVE-2020-25685 5 Arista, Debian, Fedoraproject and 2 more 10 Eos, Debian Linux, Fedora and 7 more 2025-11-04 3.7 Low
A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in forward.c:reply_query(), which is the forwarded query that matches the reply, by only using a weak hash of the query name. Due to the weak hash (CRC32 when dnsmasq is compiled without DNSSEC, SHA-1 when it is) this flaw allows an off-path attacker to find several different domains all having the same hash, substantially reducing the number of attempts they would have to perform to forge a reply and get it accepted by dnsmasq. This is in contrast with RFC5452, which specifies that the query name is one of the attributes of a query that must be used to match a reply. This flaw could be abused to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25684 the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity.
CVE-2020-25684 5 Arista, Debian, Fedoraproject and 2 more 10 Eos, Debian Linux, Fedora and 7 more 2025-11-04 3.7 Low
A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in the forward.c:reply_query() if the reply destination address/port is used by the pending forwarded queries. However, it does not use the address/port to retrieve the exact forwarded query, substantially reducing the number of attempts an attacker on the network would have to perform to forge a reply and get it accepted by dnsmasq. This issue contrasts with RFC5452, which specifies a query's attributes that all must be used to match a reply. This flaw allows an attacker to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25685 or CVE-2020-25686, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity.
CVE-2020-25683 4 Debian, Fedoraproject, Redhat and 1 more 5 Debian Linux, Fedora, Enterprise Linux and 2 more 2025-11-04 5.9 Medium
A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
CVE-2020-25682 4 Debian, Fedoraproject, Redhat and 1 more 5 Debian Linux, Fedora, Enterprise Linux and 2 more 2025-11-04 8.1 High
A flaw was found in dnsmasq before 2.83. A buffer overflow vulnerability was discovered in the way dnsmasq extract names from DNS packets before validating them with DNSSEC data. An attacker on the network, who can create valid DNS replies, could use this flaw to cause an overflow with arbitrary data in a heap-allocated memory, possibly executing code on the machine. The flaw is in the rfc1035.c:extract_name() function, which writes data to the memory pointed by name assuming MAXDNAME*2 bytes are available in the buffer. However, in some code execution paths, it is possible extract_name() gets passed an offset from the base buffer, thus reducing, in practice, the number of available bytes that can be written in the buffer. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
CVE-2020-25681 4 Debian, Fedoraproject, Redhat and 1 more 5 Debian Linux, Fedora, Enterprise Linux and 2 more 2025-11-04 8.1 High
A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in the way RRSets are sorted before validating with DNSSEC data. An attacker on the network, who can forge DNS replies such as that they are accepted as valid, could use this flaw to cause a buffer overflow with arbitrary data in a heap memory segment, possibly executing code on the machine. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
CVE-2024-28182 4 Debian, Fedoraproject, Nghttp2 and 1 more 9 Debian Linux, Fedora, Nghttp2 and 6 more 2025-11-04 5.3 Medium
nghttp2 is an implementation of the Hypertext Transfer Protocol version 2 in C. The nghttp2 library prior to version 1.61.0 keeps reading the unbounded number of HTTP/2 CONTINUATION frames even after a stream is reset to keep HPACK context in sync. This causes excessive CPU usage to decode HPACK stream. nghttp2 v1.61.0 mitigates this vulnerability by limiting the number of CONTINUATION frames it accepts per stream. There is no workaround for this vulnerability.
CVE-2024-27983 2 Nodejs, Redhat 7 Nodejs, Enterprise Linux, Rhel Aus and 4 more 2025-11-04 7.5 High
An attacker can make the Node.js HTTP/2 server completely unavailable by sending a small amount of HTTP/2 frames packets with a few HTTP/2 frames inside. It is possible to leave some data in nghttp2 memory after reset when headers with HTTP/2 CONTINUATION frame are sent to the server and then a TCP connection is abruptly closed by the client triggering the Http2Session destructor while header frames are still being processed (and stored in memory) causing a race condition.
CVE-2024-26603 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Stop relying on userspace for info to fault in xsave buffer Before this change, the expected size of the user space buffer was taken from fx_sw->xstate_size. fx_sw->xstate_size can be changed from user-space, so it is possible construct a sigreturn frame where: * fx_sw->xstate_size is smaller than the size required by valid bits in fx_sw->xfeatures. * user-space unmaps parts of the sigrame fpu buffer so that not all of the buffer required by xrstor is accessible. In this case, xrstor tries to restore and accesses the unmapped area which results in a fault. But fault_in_readable succeeds because buf + fx_sw->xstate_size is within the still mapped area, so it goes back and tries xrstor again. It will spin in this loop forever. Instead, fault in the maximum size which can be touched by XRSTOR (taken from fpstate->user_size). [ dhansen: tweak subject / changelog ]
CVE-2024-26585 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-11-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between tx work scheduling and socket close Similarly to previous commit, the submitting thread (recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete(). Reorder scheduling the work before calling complete(). This seems more logical in the first place, as it's the inverse order of what the submitting thread will do.
CVE-2024-26584 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-11-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: tls: handle backlogging of crypto requests Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our requests to the crypto API, crypto_aead_{encrypt,decrypt} can return -EBUSY instead of -EINPROGRESS in valid situations. For example, when the cryptd queue for AESNI is full (easy to trigger with an artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued to the backlog but still processed. In that case, the async callback will also be called twice: first with err == -EINPROGRESS, which it seems we can just ignore, then with err == 0. Compared to Sabrina's original patch this version uses the new tls_*crypt_async_wait() helpers and converts the EBUSY to EINPROGRESS to avoid having to modify all the error handling paths. The handling is identical.
CVE-2024-26583 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-11-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires.
CVE-2024-26582 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: tls: fix use-after-free with partial reads and async decrypt tls_decrypt_sg doesn't take a reference on the pages from clear_skb, so the put_page() in tls_decrypt_done releases them, and we trigger a use-after-free in process_rx_list when we try to read from the partially-read skb.
CVE-2024-23222 2 Apple, Redhat 10 Ipados, Iphone Os, Macos and 7 more 2025-11-04 8.8 High
A type confusion issue was addressed with improved checks. This issue is fixed in iOS 17.3 and iPadOS 17.3, macOS Sonoma 14.3, tvOS 17.3. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been exploited.
CVE-2024-21885 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-04 7.8 High
A flaw was found in X.Org server. In the XISendDeviceHierarchyEvent function, it is possible to exceed the allocated array length when certain new device IDs are added to the xXIHierarchyInfo struct. This can trigger a heap buffer overflow condition, which may lead to an application crash or remote code execution in SSH X11 forwarding environments.
CVE-2024-20945 2 Oracle, Redhat 11 Graalvm, Graalvm For Jdk, Jdk and 8 more 2025-11-04 4.7 Medium
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Security). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows low privileged attacker with logon to the infrastructure where Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition executes to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N).
CVE-2024-20921 2 Oracle, Redhat 11 Graalvm, Graalvm For Jdk, Jdk and 8 more 2025-11-04 5.9 Medium
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N).