Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Eus
Subscriptions
Total
2948 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-35877 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: fix VM_PAT handling in COW mappings PAT handling won't do the right thing in COW mappings: the first PTE (or, in fact, all PTEs) can be replaced during write faults to point at anon folios. Reliably recovering the correct PFN and cachemode using follow_phys() from PTEs will not work in COW mappings. Using follow_phys(), we might just get the address+protection of the anon folio (which is very wrong), or fail on swap/nonswap entries, failing follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and track_pfn_copy(), not properly calling free_pfn_range(). In free_pfn_range(), we either wouldn't call memtype_free() or would call it with the wrong range, possibly leaking memory. To fix that, let's update follow_phys() to refuse returning anon folios, and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings if we run into that. We will now properly handle untrack_pfn() with COW mappings, where we don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if the first page was replaced by an anon folio, though: we'd have to store the cachemode in the VMA to make this work, likely growing the VMA size. For now, lets keep it simple and let track_pfn_copy() just fail in that case: it would have failed in the past with swap/nonswap entries already, and it would have done the wrong thing with anon folios. Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn(): <--- C reproducer ---> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <liburing.h> int main(void) { struct io_uring_params p = {}; int ring_fd; size_t size; char *map; ring_fd = io_uring_setup(1, &p); if (ring_fd < 0) { perror("io_uring_setup"); return 1; } size = p.sq_off.array + p.sq_entries * sizeof(unsigned); /* Map the submission queue ring MAP_PRIVATE */ map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, ring_fd, IORING_OFF_SQ_RING); if (map == MAP_FAILED) { perror("mmap"); return 1; } /* We have at least one page. Let's COW it. */ *map = 0; pause(); return 0; } <--- C reproducer ---> On a system with 16 GiB RAM and swap configured: # ./iouring & # memhog 16G # killall iouring [ 301.552930] ------------[ cut here ]------------ [ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100 [ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g [ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1 [ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4 [ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100 [ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000 [ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282 [ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047 [ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200 [ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000 [ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000 [ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000 [ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000 [ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0 [ 301.565725] PKRU: 55555554 [ 301.565944] Call Trace: [ 301.566148] <TASK> [ 301.566325] ? untrack_pfn+0xf4/0x100 [ 301.566618] ? __warn+0x81/0x130 [ 301.566876] ? untrack_pfn+0xf4/0x100 [ 3 ---truncated--- | ||||
CVE-2024-35875 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: x86/coco: Require seeding RNG with RDRAND on CoCo systems There are few uses of CoCo that don't rely on working cryptography and hence a working RNG. Unfortunately, the CoCo threat model means that the VM host cannot be trusted and may actively work against guests to extract secrets or manipulate computation. Since a malicious host can modify or observe nearly all inputs to guests, the only remaining source of entropy for CoCo guests is RDRAND. If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole is meant to gracefully continue on gathering entropy from other sources, but since there aren't other sources on CoCo, this is catastrophic. This is mostly a concern at boot time when initially seeding the RNG, as after that the consequences of a broken RDRAND are much more theoretical. So, try at boot to seed the RNG using 256 bits of RDRAND output. If this fails, panic(). This will also trigger if the system is booted without RDRAND, as RDRAND is essential for a safe CoCo boot. Add this deliberately to be "just a CoCo x86 driver feature" and not part of the RNG itself. Many device drivers and platforms have some desire to contribute something to the RNG, and add_device_randomness() is specifically meant for this purpose. Any driver can call it with seed data of any quality, or even garbage quality, and it can only possibly make the quality of the RNG better or have no effect, but can never make it worse. Rather than trying to build something into the core of the RNG, consider the particular CoCo issue just a CoCo issue, and therefore separate it all out into driver (well, arch/platform) code. [ bp: Massage commit message. ] | ||||
CVE-2024-35870 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix UAF in smb2_reconnect_server() The UAF bug is due to smb2_reconnect_server() accessing a session that is already being teared down by another thread that is executing __cifs_put_smb_ses(). This can happen when (a) the client has connection to the server but no session or (b) another thread ends up setting @ses->ses_status again to something different than SES_EXITING. To fix this, we need to make sure to unconditionally set @ses->ses_status to SES_EXITING and prevent any other threads from setting a new status while we're still tearing it down. The following can be reproduced by adding some delay to right after the ipc is freed in __cifs_put_smb_ses() - which will give smb2_reconnect_server() worker a chance to run and then accessing @ses->ipc: kinit ... mount.cifs //srv/share /mnt/1 -o sec=krb5,nohandlecache,echo_interval=10 [disconnect srv] ls /mnt/1 &>/dev/null sleep 30 kdestroy [reconnect srv] sleep 10 umount /mnt/1 ... CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed CIFS: VFS: \\srv Send error in SessSetup = -126 CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed CIFS: VFS: \\srv Send error in SessSetup = -126 general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc2 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 Workqueue: cifsiod smb2_reconnect_server [cifs] RIP: 0010:__list_del_entry_valid_or_report+0x33/0xf0 Code: 4f 08 48 85 d2 74 42 48 85 c9 74 59 48 b8 00 01 00 00 00 00 ad de 48 39 c2 74 61 48 b8 22 01 00 00 00 00 74 69 <48> 8b 01 48 39 f8 75 7b 48 8b 72 08 48 39 c6 0f 85 88 00 00 00 b8 RSP: 0018:ffffc900001bfd70 EFLAGS: 00010a83 RAX: dead000000000122 RBX: ffff88810da53838 RCX: 6b6b6b6b6b6b6b6b RDX: 6b6b6b6b6b6b6b6b RSI: ffffffffc02f6878 RDI: ffff88810da53800 RBP: ffff88810da53800 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff88810c064000 R13: 0000000000000001 R14: ffff88810c064000 R15: ffff8881039cc000 FS: 0000000000000000(0000) GS:ffff888157c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe3728b1000 CR3: 000000010caa4000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? die_addr+0x36/0x90 ? exc_general_protection+0x1c1/0x3f0 ? asm_exc_general_protection+0x26/0x30 ? __list_del_entry_valid_or_report+0x33/0xf0 __cifs_put_smb_ses+0x1ae/0x500 [cifs] smb2_reconnect_server+0x4ed/0x710 [cifs] process_one_work+0x205/0x6b0 worker_thread+0x191/0x360 ? __pfx_worker_thread+0x10/0x10 kthread+0xe2/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> | ||||
CVE-2024-35857 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: icmp: prevent possible NULL dereferences from icmp_build_probe() First problem is a double call to __in_dev_get_rcu(), because the second one could return NULL. if (__in_dev_get_rcu(dev) && __in_dev_get_rcu(dev)->ifa_list) Second problem is a read from dev->ip6_ptr with no NULL check: if (!list_empty(&rcu_dereference(dev->ip6_ptr)->addr_list)) Use the correct RCU API to fix these. v2: add missing include <net/addrconf.h> | ||||
CVE-2024-35855 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update The rule activity update delayed work periodically traverses the list of configured rules and queries their activity from the device. As part of this task it accesses the entry pointed by 'ventry->entry', but this entry can be changed concurrently by the rehash delayed work, leading to a use-after-free [1]. Fix by closing the race and perform the activity query under the 'vregion->lock' mutex. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181 CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 mlxsw_sp_acl_rule_activity_update_work+0x219/0x400 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 | ||||
CVE-2024-35854 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 8.8 High |
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70 mlxsw_sp_acl_atcam_entry_del+0x81/0x210 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 174: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 7: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 | ||||
CVE-2024-35853 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 6.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak during rehash The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_region_fini+0x19/0x60 mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> | ||||
CVE-2024-35852 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work The rehash delayed work is rescheduled with a delay if the number of credits at end of the work is not negative as supposedly it means that the migration ended. Otherwise, it is rescheduled immediately. After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash" the above is no longer accurate as a non-negative number of credits is no longer indicative of the migration being done. It can also happen if the work encountered an error in which case the migration will resume the next time the work is scheduled. The significance of the above is that it is possible for the work to be pending and associated with hints that were allocated when the migration started. This leads to the hints being leaked [1] when the work is canceled while pending as part of ACL region dismantle. Fix by freeing the hints if hints are associated with a work that was canceled while pending. Blame the original commit since the reliance on not having a pending work associated with hints is fragile. [1] unreferenced object 0xffff88810e7c3000 (size 256): comm "kworker/0:16", pid 176, jiffies 4295460353 hex dump (first 32 bytes): 00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a....... 00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@........... backtrace (crc 2544ddb9): [<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0 [<000000004d9a1ad9>] objagg_hints_get+0x42/0x390 [<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400 [<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160 [<00000000e81fd734>] process_one_work+0x59c/0xf20 [<00000000ceee9e81>] worker_thread+0x799/0x12c0 [<00000000bda6fe39>] kthread+0x246/0x300 [<0000000070056d23>] ret_from_fork+0x34/0x70 [<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30 | ||||
CVE-2024-35847 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Prevent double free on error The error handling path in its_vpe_irq_domain_alloc() causes a double free when its_vpe_init() fails after successfully allocating at least one interrupt. This happens because its_vpe_irq_domain_free() frees the interrupts along with the area bitmap and the vprop_page and its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the vprop_page again. Fix this by unconditionally invoking its_vpe_irq_domain_free() which handles all cases correctly and by removing the bitmap/vprop_page freeing from its_vpe_irq_domain_alloc(). [ tglx: Massaged change log ] | ||||
CVE-2024-35845 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 9.1 Critical |
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it. | ||||
CVE-2024-35839 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: bridge: replace physindev with physinif in nf_bridge_info An skb can be added to a neigh->arp_queue while waiting for an arp reply. Where original skb's skb->dev can be different to neigh's neigh->dev. For instance in case of bridging dnated skb from one veth to another, the skb would be added to a neigh->arp_queue of the bridge. As skb->dev can be reset back to nf_bridge->physindev and used, and as there is no explicit mechanism that prevents this physindev from been freed under us (for instance neigh_flush_dev doesn't cleanup skbs from different device's neigh queue) we can crash on e.g. this stack: arp_process neigh_update skb = __skb_dequeue(&neigh->arp_queue) neigh_resolve_output(..., skb) ... br_nf_dev_xmit br_nf_pre_routing_finish_bridge_slow skb->dev = nf_bridge->physindev br_handle_frame_finish Let's use plain ifindex instead of net_device link. To peek into the original net_device we will use dev_get_by_index_rcu(). Thus either we get device and are safe to use it or we don't get it and drop skb. | ||||
CVE-2024-35838 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix potential sta-link leak When a station is allocated, links are added but not set to valid yet (e.g. during connection to an AP MLD), we might remove the station without ever marking links valid, and leak them. Fix that. | ||||
CVE-2024-35835 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix a double-free in arfs_create_groups When `in` allocated by kvzalloc fails, arfs_create_groups will free ft->g and return an error. However, arfs_create_table, the only caller of arfs_create_groups, will hold this error and call to mlx5e_destroy_flow_table, in which the ft->g will be freed again. | ||||
CVE-2024-35824 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: misc: lis3lv02d_i2c: Fix regulators getting en-/dis-abled twice on suspend/resume When not configured for wakeup lis3lv02d_i2c_suspend() will call lis3lv02d_poweroff() even if the device has already been turned off by the runtime-suspend handler and if configured for wakeup and the device is runtime-suspended at this point then it is not turned back on to serve as a wakeup source. Before commit b1b9f7a49440 ("misc: lis3lv02d_i2c: Add missing setting of the reg_ctrl callback"), lis3lv02d_poweroff() failed to disable the regulators which as a side effect made calling poweroff() twice ok. Now that poweroff() correctly disables the regulators, doing this twice triggers a WARN() in the regulator core: unbalanced disables for regulator-dummy WARNING: CPU: 1 PID: 92 at drivers/regulator/core.c:2999 _regulator_disable ... Fix lis3lv02d_i2c_suspend() to not call poweroff() a second time if already runtime-suspended and add a poweron() call when necessary to make wakeup work. lis3lv02d_i2c_resume() has similar issues, with an added weirness that it always powers on the device if it is runtime suspended, after which the first runtime-resume will call poweron() again, causing the enabled count for the regulator to increase by 1 every suspend/resume. These unbalanced regulator_enable() calls cause the regulator to never be turned off and trigger the following WARN() on driver unbind: WARNING: CPU: 1 PID: 1724 at drivers/regulator/core.c:2396 _regulator_put Fix this by making lis3lv02d_i2c_resume() mirror the new suspend(). | ||||
CVE-2024-35823 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers. | ||||
CVE-2024-35810 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix the lifetime of the bo cursor memory The cleanup can be dispatched while the atomic update is still active, which means that the memory acquired in the atomic update needs to not be invalidated by the cleanup. The buffer objects in vmw_plane_state instead of using the builtin map_and_cache were trying to handle the lifetime of the mapped memory themselves, leading to crashes. Use the map_and_cache instead of trying to manage the lifetime of the buffer objects held by the vmw_plane_state. Fixes kernel oops'es in IGT's kms_cursor_legacy forked-bo. | ||||
CVE-2024-35809 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: PCI/PM: Drain runtime-idle callbacks before driver removal A race condition between the .runtime_idle() callback and the .remove() callback in the rtsx_pcr PCI driver leads to a kernel crash due to an unhandled page fault [1]. The problem is that rtsx_pci_runtime_idle() is not expected to be running after pm_runtime_get_sync() has been called, but the latter doesn't really guarantee that. It only guarantees that the suspend and resume callbacks will not be running when it returns. However, if a .runtime_idle() callback is already running when pm_runtime_get_sync() is called, the latter will notice that the runtime PM status of the device is RPM_ACTIVE and it will return right away without waiting for the former to complete. In fact, it cannot wait for .runtime_idle() to complete because it may be called from that callback (it arguably does not make much sense to do that, but it is not strictly prohibited). Thus in general, whoever is providing a .runtime_idle() callback needs to protect it from running in parallel with whatever code runs after pm_runtime_get_sync(). [Note that .runtime_idle() will not start after pm_runtime_get_sync() has returned, but it may continue running then if it has started earlier.] One way to address that race condition is to call pm_runtime_barrier() after pm_runtime_get_sync() (not before it, because a nonzero value of the runtime PM usage counter is necessary to prevent runtime PM callbacks from being invoked) to wait for the .runtime_idle() callback to complete should it be running at that point. A suitable place for doing that is in pci_device_remove() which calls pm_runtime_get_sync() before removing the driver, so it may as well call pm_runtime_barrier() subsequently, which will prevent the race in question from occurring, not just in the rtsx_pcr driver, but in any PCI drivers providing .runtime_idle() callbacks. | ||||
CVE-2024-35801 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in order to avoid unnecessary writes to the MSR. On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which wipes out any stale state. But the per CPU cached xfd value is not reset, which brings them out of sync. As a consequence a subsequent xfd_update_state() might fail to update the MSR which in turn can result in XRSTOR raising a #NM in kernel space, which crashes the kernel. To fix this, introduce xfd_set_state() to write xfd_state together with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD. | ||||
CVE-2024-33621 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 2.3 Low |
In the Linux kernel, the following vulnerability has been resolved: ipvlan: Dont Use skb->sk in ipvlan_process_v{4,6}_outbound Raw packet from PF_PACKET socket ontop of an IPv6-backed ipvlan device will hit WARN_ON_ONCE() in sk_mc_loop() through sch_direct_xmit() path. WARNING: CPU: 2 PID: 0 at net/core/sock.c:775 sk_mc_loop+0x2d/0x70 Modules linked in: sch_netem ipvlan rfkill cirrus drm_shmem_helper sg drm_kms_helper CPU: 2 PID: 0 Comm: swapper/2 Kdump: loaded Not tainted 6.9.0+ #279 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:sk_mc_loop+0x2d/0x70 Code: fa 0f 1f 44 00 00 65 0f b7 15 f7 96 a3 4f 31 c0 66 85 d2 75 26 48 85 ff 74 1c RSP: 0018:ffffa9584015cd78 EFLAGS: 00010212 RAX: 0000000000000011 RBX: ffff91e585793e00 RCX: 0000000002c6a001 RDX: 0000000000000000 RSI: 0000000000000040 RDI: ffff91e589c0f000 RBP: ffff91e5855bd100 R08: 0000000000000000 R09: 3d00545216f43d00 R10: ffff91e584fdcc50 R11: 00000060dd8616f4 R12: ffff91e58132d000 R13: ffff91e584fdcc68 R14: ffff91e5869ce800 R15: ffff91e589c0f000 FS: 0000000000000000(0000) GS:ffff91e898100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f788f7c44c0 CR3: 0000000008e1a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? __warn (kernel/panic.c:693) ? sk_mc_loop (net/core/sock.c:760) ? report_bug (lib/bug.c:201 lib/bug.c:219) ? handle_bug (arch/x86/kernel/traps.c:239) ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1)) ? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621) ? sk_mc_loop (net/core/sock.c:760) ip6_finish_output2 (net/ipv6/ip6_output.c:83 (discriminator 1)) ? nf_hook_slow (net/netfilter/core.c:626) ip6_finish_output (net/ipv6/ip6_output.c:222) ? __pfx_ip6_finish_output (net/ipv6/ip6_output.c:215) ipvlan_xmit_mode_l3 (drivers/net/ipvlan/ipvlan_core.c:602) ipvlan ipvlan_start_xmit (drivers/net/ipvlan/ipvlan_main.c:226) ipvlan dev_hard_start_xmit (net/core/dev.c:3594) sch_direct_xmit (net/sched/sch_generic.c:343) __qdisc_run (net/sched/sch_generic.c:416) net_tx_action (net/core/dev.c:5286) handle_softirqs (kernel/softirq.c:555) __irq_exit_rcu (kernel/softirq.c:589) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1043) The warning triggers as this: packet_sendmsg packet_snd //skb->sk is packet sk __dev_queue_xmit __dev_xmit_skb //q->enqueue is not NULL __qdisc_run sch_direct_xmit dev_hard_start_xmit ipvlan_start_xmit ipvlan_xmit_mode_l3 //l3 mode ipvlan_process_outbound //vepa flag ipvlan_process_v6_outbound ip6_local_out __ip6_finish_output ip6_finish_output2 //multicast packet sk_mc_loop //sk->sk_family is AF_PACKET Call ip{6}_local_out() with NULL sk in ipvlan as other tunnels to fix this. | ||||
CVE-2024-31076 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 5.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of interrupt affinity reconfiguration via procfs. Instead, the change is deferred until the next instance of the interrupt being triggered on the original CPU. When the interrupt next triggers on the original CPU, the new affinity is enforced within __irq_move_irq(). A vector is allocated from the new CPU, but the old vector on the original CPU remains and is not immediately reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming process is delayed until the next trigger of the interrupt on the new CPU. Upon the subsequent triggering of the interrupt on the new CPU, irq_complete_move() adds a task to the old CPU's vector_cleanup list if it remains online. Subsequently, the timer on the old CPU iterates over its vector_cleanup list, reclaiming old vectors. However, a rare scenario arises if the old CPU is outgoing before the interrupt triggers again on the new CPU. In that case irq_force_complete_move() is not invoked on the outgoing CPU to reclaim the old apicd->prev_vector because the interrupt isn't currently affine to the outgoing CPU, and irq_needs_fixup() returns false. Even though __vector_schedule_cleanup() is later called on the new CPU, it doesn't reclaim apicd->prev_vector; instead, it simply resets both apicd->move_in_progress and apicd->prev_vector to 0. As a result, the vector remains unreclaimed in vector_matrix, leading to a CPU vector leak. To address this issue, move the invocation of irq_force_complete_move() before the irq_needs_fixup() call to reclaim apicd->prev_vector, if the interrupt is currently or used to be affine to the outgoing CPU. Additionally, reclaim the vector in __vector_schedule_cleanup() as well, following a warning message, although theoretically it should never see apicd->move_in_progress with apicd->prev_cpu pointing to an offline CPU. |