Total
1681 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-50550 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: blk-iolatency: Fix memory leak on add_disk() failures When a gendisk is successfully initialized but add_disk() fails such as when a loop device has invalid number of minor device numbers specified, blkcg_init_disk() is called during init and then blkcg_exit_disk() during error handling. Unfortunately, iolatency gets initialized in the former but doesn't get cleaned up in the latter. This is because, in non-error cases, the cleanup is performed by del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos policies, iolatency being one of them, can only be activated once the disk is fully registered and visible. That assumption is true for wbt and iocost, but not so for iolatency as it gets initialized before add_disk() is called. It is desirable to lazy-init rq_qos policies because they are optional features and add to hot path overhead once initialized - each IO has to walk all the registered rq_qos policies. So, we want to switch iolatency to lazy init too. However, that's a bigger change. As a fix for the immediate problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk(). This is safe because duplicate calls to rq_qos_exit() become noop's. | ||||
| CVE-2022-50548 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: i2c: hi846: Fix memory leak in hi846_parse_dt() If any of the checks related to the supported link frequencies fail, then the V4L2 fwnode resources don't get released before returning, which leads to a memleak. Fix this by properly freeing the V4L2 fwnode data in a designated label. | ||||
| CVE-2022-50547 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: solo6x10: fix possible memory leak in solo_sysfs_init() If device_register() returns error in solo_sysfs_init(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(). | ||||
| CVE-2022-50545 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: r6040: Fix kmemleak in probe and remove There is a memory leaks reported by kmemleak: unreferenced object 0xffff888116111000 (size 2048): comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s) hex dump (first 32 bytes): 00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................ 08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff815bcd82>] kmalloc_trace+0x22/0x60 [<ffffffff827e20ee>] phy_device_create+0x4e/0x90 [<ffffffff827e6072>] get_phy_device+0xd2/0x220 [<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0 [<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0 [<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040] ... The problem occurs in probe process as follows: r6040_init_one: mdiobus_register mdiobus_scan <- alloc and register phy_device, the reference count of phy_device is 3 r6040_mii_probe phy_connect <- connect to the first phy_device, so the reference count of the first phy_device is 4, others are 3 register_netdev <- fault inject succeeded, goto error handling path // error handling path err_out_mdio_unregister: mdiobus_unregister(lp->mii_bus); err_out_mdio: mdiobus_free(lp->mii_bus); <- the reference count of the first phy_device is 1, it is not released and other phy_devices are released // similarly, the remove process also has the same problem The root cause is traced to the phy_device is not disconnected when removes one r6040 device in r6040_remove_one() or on error handling path after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet device is connected to the first PHY device of mii_bus, in order to notify the connected driver when the link status changes, which is the default behavior of the PHY infrastructure to handle everything. Therefore the phy_device should be disconnected when removes one r6040 device or on error handling path. Fix it by adding phy_disconnect() when removes one r6040 device or on error handling path after r6040_mii probed successfully. | ||||
| CVE-2022-50537 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: firmware: raspberrypi: fix possible memory leak in rpi_firmware_probe() In rpi_firmware_probe(), if mbox_request_channel() fails, the 'fw' will not be freed through rpi_firmware_delete(), fix this leak by calling kfree() in the error path. | ||||
| CVE-2022-50544 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb: host: xhci: Fix potential memory leak in xhci_alloc_stream_info() xhci_alloc_stream_info() allocates stream context array for stream_info ->stream_ctx_array with xhci_alloc_stream_ctx(). When some error occurs, stream_info->stream_ctx_array is not released, which will lead to a memory leak. We can fix it by releasing the stream_info->stream_ctx_array with xhci_free_stream_ctx() on the error path to avoid the potential memory leak. | ||||
| CVE-2022-50515 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix memory leak in hpd_rx_irq_create_workqueue() If construction of the array of work queues to handle hpd_rx_irq offload work fails, we need to unwind. Destroy all the created workqueues and the allocated memory for the hpd_rx_irq_offload_work_queue struct array. | ||||
| CVE-2022-50521 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: platform/x86: mxm-wmi: fix memleak in mxm_wmi_call_mx[ds|mx]() The ACPI buffer memory (out.pointer) returned by wmi_evaluate_method() is not freed after the call, so it leads to memory leak. The method results in ACPI buffer is not used, so just pass NULL to wmi_evaluate_method() which fixes the memory leak. | ||||
| CVE-2022-50523 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: clk: rockchip: Fix memory leak in rockchip_clk_register_pll() If clk_register() fails, @pll->rate_table may have allocated memory by kmemdup(), so it needs to be freed, otherwise will cause memory leak issue, this patch fixes it. | ||||
| CVE-2022-50525 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommu/fsl_pamu: Fix resource leak in fsl_pamu_probe() The fsl_pamu_probe() returns directly when create_csd() failed, leaving irq and memories unreleased. Fix by jumping to error if create_csd() returns error. | ||||
| CVE-2022-50528 | 1 Linux | 1 Linux Kernel | 2026-02-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leakage This patch fixes potential memory leakage and seg fault in _gpuvm_import_dmabuf() function | ||||
| CVE-2025-47397 | 1 Qualcomm | 1 Snapdragon | 2026-02-04 | 7.8 High |
| Memory Corruption when initiating GPU memory mapping using scatter-gather lists due to unchecked IOMMU mapping errors. | ||||
| CVE-2023-53637 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov772x: Fix memleak in ov772x_probe() A memory leak was reported when testing ov772x with bpf mock device: AssertionError: unreferenced object 0xffff888109afa7a8 (size 8): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 8 bytes): 80 22 88 15 81 88 ff ff ."...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<00000000faf48134>] v4l2_ctrl_handler_init_class+0x11d/0x180 [videodev] [<00000000da376937>] ov772x_probe+0x1c3/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 [<00000000a9f2159d>] of_i2c_notify+0x100/0x160 unreferenced object 0xffff888119825c00 (size 256): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 32 bytes): 00 b4 a5 17 81 88 ff ff 00 5e 82 19 81 88 ff ff .........^...... 10 5c 82 19 81 88 ff ff 10 5c 82 19 81 88 ff ff .\.......\...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<0000000073d88e0b>] v4l2_ctrl_new.cold+0x19b/0x86f [videodev] [<00000000b1f576fb>] v4l2_ctrl_new_std+0x16f/0x210 [videodev] [<00000000caf7ac99>] ov772x_probe+0x1fa/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 The reason is that if priv->hdl.error is set, ov772x_probe() jumps to the error_mutex_destroy without doing v4l2_ctrl_handler_free(), and all resources allocated in v4l2_ctrl_handler_init() and v4l2_ctrl_new_std() are leaked. | ||||
| CVE-2023-53641 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: hif_usb: fix memory leak of remain_skbs hif_dev->remain_skb is allocated and used exclusively in ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is processed and subsequently freed (in error paths) only during the next call of ath9k_hif_usb_rx_stream(). So, if the urbs are deallocated between those two calls due to the device deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream() is not called next time and the allocated remain_skb is leaked. Our local Syzkaller instance was able to trigger that. remain_skb makes sense when receiving two consecutive urbs which are logically linked together, i.e. a specific data field from the first skb indicates a cached skb to be allocated, memcpy'd with some data and subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs deallocation supposedly makes that link irrelevant so we need to free the cached skb in those cases. Fix the leak by introducing a function to explicitly free remain_skb (if it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL when it has not been allocated at all (hif_dev struct is kzalloced) or when it has been processed in next call to ath9k_hif_usb_rx_stream(). Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2023-53649 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: perf trace: Really free the evsel->priv area In 3cb4d5e00e037c70 ("perf trace: Free syscall tp fields in evsel->priv") it only was freeing if strcmp(evsel->tp_format->system, "syscalls") returned zero, while the corresponding initialization of evsel->priv was being performed if it was _not_ zero, i.e. if the tp system wasn't 'syscalls'. Just stop looking for that and free it if evsel->priv was set, which should be equivalent. Also use the pre-existing evsel_trace__delete() function. This resolves these leaks, detected with: $ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin ================================================================= ==481565==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097) #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966) #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307 #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333 #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458 #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480 #6 0x540e8b in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3212 #7 0x540e8b in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891 #8 0x540e8b in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156 #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323 #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377 #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421 #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537 #13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f) Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097) #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966) #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307 #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333 #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458 #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480 #6 0x540dd1 in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3205 #7 0x540dd1 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891 #8 0x540dd1 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156 #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323 #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377 #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421 #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537 #13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f) SUMMARY: AddressSanitizer: 80 byte(s) leaked in 2 allocation(s). [root@quaco ~]# With this we plug all leaks with "perf trace sleep 1". | ||||
| CVE-2023-53650 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fbdev: omapfb: lcd_mipid: Fix an error handling path in mipid_spi_probe() If 'mipid_detect()' fails, we must free 'md' to avoid a memory leak. | ||||
| CVE-2023-53633 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Fix a leak in map_user_pages() If get_user_pages_fast() allocates some pages but not as many as we wanted, then the current code leaks those pages. Call put_page() on the pages before returning. | ||||
| CVE-2025-56353 | 1 Justdoit0910 | 1 Tinymqtt | 2026-02-03 | 7.5 High |
| In tinyMQTT commit 6226ade15bd4f97be2d196352e64dd10937c1962 (2024-02-18), a memory leak occurs due to the broker's failure to validate or reject malformed UTF-8 strings in topic filters. An attacker can exploit this by sending repeated subscription requests with arbitrarily large or invalid filter payloads. Each request causes memory to be allocated for the malformed topic filter, but the broker does not free the associated memory, leading to unbounded heap growth and potential denial of service under sustained attack. | ||||
| CVE-2023-53669 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tcp: fix skb_copy_ubufs() vs BIG TCP David Ahern reported crashes in skb_copy_ubufs() caused by TCP tx zerocopy using hugepages, and skb length bigger than ~68 KB. skb_copy_ubufs() assumed it could copy all payload using up to MAX_SKB_FRAGS order-0 pages. This assumption broke when BIG TCP was able to put up to 512 KB per skb. We did not hit this bug at Google because we use CONFIG_MAX_SKB_FRAGS=45 and limit gso_max_size to 180000. A solution is to use higher order pages if needed. v2: add missing __GFP_COMP, or we leak memory. | ||||
| CVE-2023-53670 | 1 Linux | 1 Linux Kernel | 2026-02-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nvme-core: fix dev_pm_qos memleak Call dev_pm_qos_hide_latency_tolerance() in the error unwind patch to avoid following kmemleak:- blktests (master) # kmemleak-clear; ./check nvme/044; blktests (master) # kmemleak-scan ; kmemleak-show nvme/044 (Test bi-directional authentication) [passed] runtime 2.111s ... 2.124s unreferenced object 0xffff888110c46240 (size 96): comm "nvme", pid 33461, jiffies 4345365353 (age 75.586s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<0000000069ac2cec>] kmalloc_trace+0x25/0x90 [<000000006acc66d5>] dev_pm_qos_update_user_latency_tolerance+0x6f/0x100 [<00000000cc376ea7>] nvme_init_ctrl+0x38e/0x410 [nvme_core] [<000000007df61b4b>] 0xffffffffc05e88b3 [<00000000d152b985>] 0xffffffffc05744cb [<00000000f04a4041>] vfs_write+0xc5/0x3c0 [<00000000f9491baf>] ksys_write+0x5f/0xe0 [<000000001c46513d>] do_syscall_64+0x3b/0x90 [<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc | ||||