Total
1328 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49442 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drivers/base/node.c: fix compaction sysfs file leak Compaction sysfs file is created via compaction_register_node in register_node. But we forgot to remove it in unregister_node. Thus compaction sysfs file is leaked. Using compaction_unregister_node to fix this issue. | ||||
| CVE-2022-49452 | 1 Linux | 1 Linux Kernel | 2025-10-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dpaa2-eth: retrieve the virtual address before dma_unmap The TSO header was DMA unmapped before the virtual address was retrieved and then used to free the buffer. This meant that we were actually removing the DMA map and then trying to search for it to help in retrieving the virtual address. This lead to a invalid virtual address being used in the kfree call. Fix this by calling dpaa2_iova_to_virt() prior to the dma_unmap call. [ 487.231819] Unable to handle kernel paging request at virtual address fffffd9807000008 (...) [ 487.354061] Hardware name: SolidRun LX2160A Honeycomb (DT) [ 487.359535] pstate: a0400005 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 487.366485] pc : kfree+0xac/0x304 [ 487.369799] lr : kfree+0x204/0x304 [ 487.373191] sp : ffff80000c4eb120 [ 487.376493] x29: ffff80000c4eb120 x28: ffff662240c46400 x27: 0000000000000001 [ 487.383621] x26: 0000000000000001 x25: ffff662246da0cc0 x24: ffff66224af78000 [ 487.390748] x23: ffffad184f4ce008 x22: ffffad1850185000 x21: ffffad1838d13cec [ 487.397874] x20: ffff6601c0000000 x19: fffffd9807000000 x18: 0000000000000000 [ 487.405000] x17: ffffb910cdc49000 x16: ffffad184d7d9080 x15: 0000000000004000 [ 487.412126] x14: 0000000000000008 x13: 000000000000ffff x12: 0000000000000000 [ 487.419252] x11: 0000000000000004 x10: 0000000000000001 x9 : ffffad184d7d927c [ 487.426379] x8 : 0000000000000000 x7 : 0000000ffffffd1d x6 : ffff662240a94900 [ 487.433505] x5 : 0000000000000003 x4 : 0000000000000009 x3 : ffffad184f4ce008 [ 487.440632] x2 : ffff662243eec000 x1 : 0000000100000100 x0 : fffffc0000000000 [ 487.447758] Call trace: [ 487.450194] kfree+0xac/0x304 [ 487.453151] dpaa2_eth_free_tx_fd.isra.0+0x33c/0x3e0 [fsl_dpaa2_eth] [ 487.459507] dpaa2_eth_tx_conf+0x100/0x2e0 [fsl_dpaa2_eth] [ 487.464989] dpaa2_eth_poll+0xdc/0x380 [fsl_dpaa2_eth] | ||||
| CVE-2022-49469 | 1 Linux | 1 Linux Kernel | 2025-10-22 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix anon_dev leak in create_subvol() When btrfs_qgroup_inherit(), btrfs_alloc_tree_block, or btrfs_insert_root() fail in create_subvol(), we return without freeing anon_dev. Reorganize the error handling in create_subvol() to fix this. | ||||
| CVE-2023-26083 | 1 Arm | 4 5th Gen Gpu Architecture Kernel Driver, Bifrost Gpu Kernel Driver, Midgard Gpu Kernel Driver and 1 more | 2025-10-22 | 3.3 Low |
| Memory leak vulnerability in Mali GPU Kernel Driver in Midgard GPU Kernel Driver all versions from r6p0 - r32p0, Bifrost GPU Kernel Driver all versions from r0p0 - r42p0, Valhall GPU Kernel Driver all versions from r19p0 - r42p0, and Avalon GPU Kernel Driver all versions from r41p0 - r42p0 allows a non-privileged user to make valid GPU processing operations that expose sensitive kernel metadata. | ||||
| CVE-2025-61974 | 1 F5 | 6 Big-ip, Big-ip Next, Big-ip Next Cloud-native Network Functions and 3 more | 2025-10-21 | 7.5 High |
| When a client SSL profile is configured on a virtual server, undisclosed requests can cause an increase in memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | ||||
| CVE-2025-54805 | 1 F5 | 6 Big-ip, Big-ip Next, Big-ip Next Cloud-native Network Functions and 3 more | 2025-10-21 | 6.5 Medium |
| When an iRule is configured on a virtual server via the declarative API, upon re-instantiation, the cleanup process can cause an increase in the Traffic Management Microkernel (TMM) memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | ||||
| CVE-2025-47150 | 1 F5 | 3 F5os, F5os-a, F5os-c | 2025-10-21 | 6.5 Medium |
| When SNMP is configured on F5OS Appliance and Chassis systems, undisclosed requests can cause an increase in SNMP memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | ||||
| CVE-2022-49521 | 1 Linux | 1 Linux Kernel | 2025-10-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix resource leak in lpfc_sli4_send_seq_to_ulp() If no handler is found in lpfc_complete_unsol_iocb() to match the rctl of a received frame, the frame is dropped and resources are leaked. Fix by returning resources when discarding an unhandled frame type. Update lpfc_fc_frame_check() handling of NOP basic link service. | ||||
| CVE-2022-49539 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: rtw89: ser: fix CAM leaks occurring in L2 reset The CAM, meaning address CAM and bssid CAM here, will get leaks during SER (system error recover) L2 reset process and ieee80211_restart_hw() which is called by L2 reset process eventually. The normal flow would be like -> add interface (acquire 1) -> enter ips (release 1) -> leave ips (acquire 1) -> connection (occupy 1) <(A) 1 leak after L2 reset if non-sec connection> The ieee80211_restart_hw() flow (under connection) -> ieee80211 reconfig -> add interface (acquire 1) -> leave ips (acquire 1) -> connection (occupy (A) + 2) <(B) 1 more leak> Originally, CAM is released before HW restart only if connection is under security. Now, release CAM whatever connection it is to fix leak in (A). OTOH, check if CAM is already valid to avoid acquiring multiple times to fix (B). Besides, if AP mode, release address CAM of all stations before HW restart. | ||||
| CVE-2025-21091 | 1 F5 | 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more | 2025-10-21 | 7.5 High |
| When SNMP v1 or v2c are disabled on the BIG-IP, undisclosed requests can cause an increase in memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated | ||||
| CVE-2025-25057 | 1 Openatom | 1 Openharmony | 2025-10-16 | 3.3 Low |
| in OpenHarmony v5.0.2 and prior versions allow a local attacker case DOS through missing release of memory. | ||||
| CVE-2024-57947 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-15 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_set_pipapo: fix initial map fill The initial buffer has to be inited to all-ones, but it must restrict it to the size of the first field, not the total field size. After each round in the map search step, the result and the fill map are swapped, so if we have a set where f->bsize of the first element is smaller than m->bsize_max, those one-bits are leaked into future rounds result map. This makes pipapo find an incorrect matching results for sets where first field size is not the largest. Followup patch adds a test case to nft_concat_range.sh selftest script. Thanks to Stefano Brivio for pointing out that we need to zero out the remainder explicitly, only correcting memset() argument isn't enough. | ||||
| CVE-2025-40364 | 1 Linux | 1 Linux Kernel | 2025-10-11 | 3.3 Low |
| In the Linux kernel, the following vulnerability has been resolved: io_uring: fix io_req_prep_async with provided buffers io_req_prep_async() can import provided buffers, commit the ring state by giving up on that before, it'll be reimported later if needed. | ||||
| CVE-2023-7192 | 2 Linux, Redhat | 7 Linux Kernel, Enterprise Linux, Rhel Aus and 4 more | 2025-10-10 | 5.5 Medium |
| A memory leak problem was found in ctnetlink_create_conntrack in net/netfilter/nf_conntrack_netlink.c in the Linux Kernel. This issue may allow a local attacker with CAP_NET_ADMIN privileges to cause a denial of service (DoS) attack due to a refcount overflow. | ||||
| CVE-2025-8277 | 1 Redhat | 2 Enterprise Linux, Openshift | 2025-10-08 | 3.1 Low |
| A flaw was found in libssh's handling of key exchange (KEX) processes when a client repeatedly sends incorrect KEX guesses. The library fails to free memory during these rekey operations, which can gradually exhaust system memory. This issue can lead to crashes on the client side, particularly when using libgcrypt, which impacts application stability and availability. | ||||
| CVE-2024-53236 | 1 Linux | 1 Linux Kernel | 2025-10-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: xsk: Free skb when TX metadata options are invalid When a new skb is allocated for transmitting an xsk descriptor, i.e., for every non-multibuf descriptor or the first frag of a multibuf descriptor, but the descriptor is later found to have invalid options set for the TX metadata, the new skb is never freed. This can leak skbs until the send buffer is full which makes sending more packets impossible. Fix this by freeing the skb in the error path if we are currently dealing with the first frag, i.e., an skb allocated in this iteration of xsk_build_skb. | ||||
| CVE-2024-38611 | 1 Linux | 1 Linux Kernel | 2025-10-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: i2c: et8ek8: Don't strip remove function when driver is builtin Using __exit for the remove function results in the remove callback being discarded with CONFIG_VIDEO_ET8EK8=y. When such a device gets unbound (e.g. using sysfs or hotplug), the driver is just removed without the cleanup being performed. This results in resource leaks. Fix it by compiling in the remove callback unconditionally. This also fixes a W=1 modpost warning: WARNING: modpost: drivers/media/i2c/et8ek8/et8ek8: section mismatch in reference: et8ek8_i2c_driver+0x10 (section: .data) -> et8ek8_remove (section: .exit.text) | ||||
| CVE-2024-53175 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipc: fix memleak if msg_init_ns failed in create_ipc_ns Percpu memory allocation may failed during create_ipc_ns however this fail is not handled properly since ipc sysctls and mq sysctls is not released properly. Fix this by release these two resource when failure. Here is the kmemleak stack when percpu failed: unreferenced object 0xffff88819de2a600 (size 512): comm "shmem_2nstest", pid 120711, jiffies 4300542254 hex dump (first 32 bytes): 60 aa 9d 84 ff ff ff ff fc 18 48 b2 84 88 ff ff `.........H..... 04 00 00 00 a4 01 00 00 20 e4 56 81 ff ff ff ff ........ .V..... backtrace (crc be7cba35): [<ffffffff81b43f83>] __kmalloc_node_track_caller_noprof+0x333/0x420 [<ffffffff81a52e56>] kmemdup_noprof+0x26/0x50 [<ffffffff821b2f37>] setup_mq_sysctls+0x57/0x1d0 [<ffffffff821b29cc>] copy_ipcs+0x29c/0x3b0 [<ffffffff815d6a10>] create_new_namespaces+0x1d0/0x920 [<ffffffff815d7449>] copy_namespaces+0x2e9/0x3e0 [<ffffffff815458f3>] copy_process+0x29f3/0x7ff0 [<ffffffff8154b080>] kernel_clone+0xc0/0x650 [<ffffffff8154b6b1>] __do_sys_clone+0xa1/0xe0 [<ffffffff843df8ff>] do_syscall_64+0xbf/0x1c0 [<ffffffff846000b0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 | ||||
| CVE-2024-53118 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vsock: Fix sk_error_queue memory leak Kernel queues MSG_ZEROCOPY completion notifications on the error queue. Where they remain, until explicitly recv()ed. To prevent memory leaks, clean up the queue when the socket is destroyed. unreferenced object 0xffff8881028beb00 (size 224): comm "vsock_test", pid 1218, jiffies 4294694897 hex dump (first 32 bytes): 90 b0 21 17 81 88 ff ff 90 b0 21 17 81 88 ff ff ..!.......!..... 00 00 00 00 00 00 00 00 00 b0 21 17 81 88 ff ff ..........!..... backtrace (crc 6c7031ca): [<ffffffff81418ef7>] kmem_cache_alloc_node_noprof+0x2f7/0x370 [<ffffffff81d35882>] __alloc_skb+0x132/0x180 [<ffffffff81d2d32b>] sock_omalloc+0x4b/0x80 [<ffffffff81d3a8ae>] msg_zerocopy_realloc+0x9e/0x240 [<ffffffff81fe5cb2>] virtio_transport_send_pkt_info+0x412/0x4c0 [<ffffffff81fe6183>] virtio_transport_stream_enqueue+0x43/0x50 [<ffffffff81fe0813>] vsock_connectible_sendmsg+0x373/0x450 [<ffffffff81d233d5>] ____sys_sendmsg+0x365/0x3a0 [<ffffffff81d246f4>] ___sys_sendmsg+0x84/0xd0 [<ffffffff81d26f47>] __sys_sendmsg+0x47/0x80 [<ffffffff820d3df3>] do_syscall_64+0x93/0x180 [<ffffffff8220012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e | ||||
| CVE-2024-53117 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: virtio/vsock: Improve MSG_ZEROCOPY error handling Add a missing kfree_skb() to prevent memory leaks. | ||||