Filtered by vendor Linux Subscriptions
Total 16775 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2026-23000 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix crash on profile change rollback failure mlx5e_netdev_change_profile can fail to attach a new profile and can fail to rollback to old profile, in such case, we could end up with a dangling netdev with a fully reset netdev_priv. A retry to change profile, e.g. another attempt to call mlx5e_netdev_change_profile via switchdev mode change, will crash trying to access the now NULL priv->mdev. This fix allows mlx5e_netdev_change_profile() to handle previous failures and an empty priv, by not assuming priv is valid. Pass netdev and mdev to all flows requiring mlx5e_netdev_change_profile() and avoid passing priv. In mlx5e_netdev_change_profile() check if current priv is valid, and if not, just attach the new profile without trying to access the old one. This fixes the following oops, when enabling switchdev mode for the 2nd time after first time failure: ## Enabling switchdev mode first time: mlx5_core 0012:03:00.1: E-Switch: Supported tc chains and prios offload workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12 workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 ^^^^^^^^ mlx5_core 0000:00:03.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0) ## retry: Enabling switchdev mode 2nd time: mlx5_core 0000:00:03.0: E-Switch: Supported tc chains and prios offload BUG: kernel NULL pointer dereference, address: 0000000000000038 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 13 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc4+ #91 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:mlx5e_detach_netdev+0x3c/0x90 Code: 50 00 00 f0 80 4f 78 02 48 8b bf e8 07 00 00 48 85 ff 74 16 48 8b 73 78 48 d1 ee 83 e6 01 83 f6 01 40 0f b6 f6 e8 c4 42 00 00 <48> 8b 45 38 48 85 c0 74 08 48 89 df e8 cc 47 40 1e 48 8b bb f0 07 RSP: 0018:ffffc90000673890 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8881036a89c0 RCX: 0000000000000000 RDX: ffff888113f63800 RSI: ffffffff822fe720 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000002dcd R09: 0000000000000000 R10: ffffc900006738e8 R11: 00000000ffffffff R12: 0000000000000000 R13: 0000000000000000 R14: ffff8881036a89c0 R15: 0000000000000000 FS: 00007fdfb8384740(0000) GS:ffff88856a9d6000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000038 CR3: 0000000112ae0005 CR4: 0000000000370ef0 Call Trace: <TASK> mlx5e_netdev_change_profile+0x45/0xb0 mlx5e_vport_rep_load+0x27b/0x2d0 mlx5_esw_offloads_rep_load+0x72/0xf0 esw_offloads_enable+0x5d0/0x970 mlx5_eswitch_enable_locked+0x349/0x430 ? is_mp_supported+0x57/0xb0 mlx5_devlink_eswitch_mode_set+0x26b/0x430 devlink_nl_eswitch_set_doit+0x6f/0xf0 genl_family_rcv_msg_doit+0xe8/0x140 genl_rcv_msg+0x18b/0x290 ? __pfx_devlink_nl_pre_doit+0x10/0x10 ? __pfx_devlink_nl_eswitch_set_doit+0x10/0x10 ? __pfx_devlink_nl_post_doit+0x10/0x10 ? __pfx_genl_rcv_msg+0x10/0x10 netlink_rcv_skb+0x52/0x100 genl_rcv+0x28/0x40 netlink_unicast+0x282/0x3e0 ? __alloc_skb+0xd6/0x190 netlink_sendmsg+0x1f7/0x430 __sys_sendto+0x213/0x220 ? __sys_recvmsg+0x6a/0xd0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x50/0x1f0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fdfb8495047
CVE-2026-22999 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: do not free existing class in qfq_change_class() Fixes qfq_change_class() error case. cl->qdisc and cl should only be freed if a new class and qdisc were allocated, or we risk various UAF.
CVE-2026-22998 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix NULL pointer dereferences in nvmet_tcp_build_pdu_iovec Commit efa56305908b ("nvmet-tcp: Fix a kernel panic when host sends an invalid H2C PDU length") added ttag bounds checking and data_offset validation in nvmet_tcp_handle_h2c_data_pdu(), but it did not validate whether the command's data structures (cmd->req.sg and cmd->iov) have been properly initialized before processing H2C_DATA PDUs. The nvmet_tcp_build_pdu_iovec() function dereferences these pointers without NULL checks. This can be triggered by sending H2C_DATA PDU immediately after the ICREQ/ICRESP handshake, before sending a CONNECT command or NVMe write command. Attack vectors that trigger NULL pointer dereferences: 1. H2C_DATA PDU sent before CONNECT → both pointers NULL 2. H2C_DATA PDU for READ command → cmd->req.sg allocated, cmd->iov NULL 3. H2C_DATA PDU for uninitialized command slot → both pointers NULL The fix validates both cmd->req.sg and cmd->iov before calling nvmet_tcp_build_pdu_iovec(). Both checks are required because: - Uninitialized commands: both NULL - READ commands: cmd->req.sg allocated, cmd->iov NULL - WRITE commands: both allocated
CVE-2026-22997 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is called only when the timer is enabled, we need to call j1939_session_deactivate_activate_next() if we cancelled the timer. Otherwise, refcount for j1939_session leaks, which will later appear as | unregister_netdevice: waiting for vcan0 to become free. Usage count = 2. problem.
CVE-2026-22996 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Don't store mlx5e_priv in mlx5e_dev devlink priv mlx5e_priv is an unstable structure that can be memset(0) if profile attaching fails, mlx5e_priv in mlx5e_dev devlink private is used to reference the netdev and mdev associated with that struct. Instead, store netdev directly into mlx5e_dev and get mdev from the containing mlx5_adev aux device structure. This fixes a kernel oops in mlx5e_remove when switchdev mode fails due to change profile failure. $ devlink dev eswitch set pci/0000:00:03.0 mode switchdev Error: mlx5_core: Failed setting eswitch to offloads. dmesg: workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12 workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 $ devlink dev reload pci/0000:00:03.0 ==> oops BUG: kernel NULL pointer dereference, address: 0000000000000520 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 3 UID: 0 PID: 521 Comm: devlink Not tainted 6.18.0-rc5+ #117 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:mlx5e_remove+0x68/0x130 RSP: 0018:ffffc900034838f0 EFLAGS: 00010246 RAX: ffff88810283c380 RBX: ffff888101874400 RCX: ffffffff826ffc45 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff888102d789c0 R08: ffff8881007137f0 R09: ffff888100264e10 R10: ffffc90003483898 R11: ffffc900034838a0 R12: ffff888100d261a0 R13: ffff888100d261a0 R14: ffff8881018749a0 R15: ffff888101874400 FS: 00007f8565fea740(0000) GS:ffff88856a759000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000520 CR3: 000000010b11a004 CR4: 0000000000370ef0 Call Trace: <TASK> device_release_driver_internal+0x19c/0x200 bus_remove_device+0xc6/0x130 device_del+0x160/0x3d0 ? devl_param_driverinit_value_get+0x2d/0x90 mlx5_detach_device+0x89/0xe0 mlx5_unload_one_devl_locked+0x3a/0x70 mlx5_devlink_reload_down+0xc8/0x220 devlink_reload+0x7d/0x260 devlink_nl_reload_doit+0x45b/0x5a0 genl_family_rcv_msg_doit+0xe8/0x140
CVE-2025-71163 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix device leaks on compat bind and unbind Make sure to drop the reference taken when looking up the idxd device as part of the compat bind and unbind sysfs interface.
CVE-2025-71162 1 Linux 1 Linux Kernel 2026-01-25 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: tegra-adma: Fix use-after-free A use-after-free bug exists in the Tegra ADMA driver when audio streams are terminated, particularly during XRUN conditions. The issue occurs when the DMA buffer is freed by tegra_adma_terminate_all() before the vchan completion tasklet finishes accessing it. The race condition follows this sequence: 1. DMA transfer completes, triggering an interrupt that schedules the completion tasklet (tasklet has not executed yet) 2. Audio playback stops, calling tegra_adma_terminate_all() which frees the DMA buffer memory via kfree() 3. The scheduled tasklet finally executes, calling vchan_complete() which attempts to access the already-freed memory Since tasklets can execute at any time after being scheduled, there is no guarantee that the buffer will remain valid when vchan_complete() runs. Fix this by properly synchronizing the virtual channel completion: - Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the descriptors as terminated instead of freeing the descriptor. - Add the callback tegra_adma_synchronize() that calls vchan_synchronize() which kills any pending tasklets and frees any terminated descriptors. Crash logs: [ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0 [ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0 [ 337.427562] Call trace: [ 337.427564] dump_backtrace+0x0/0x320 [ 337.427571] show_stack+0x20/0x30 [ 337.427575] dump_stack_lvl+0x68/0x84 [ 337.427584] print_address_description.constprop.0+0x74/0x2b8 [ 337.427590] kasan_report+0x1f4/0x210 [ 337.427598] __asan_load8+0xa0/0xd0 [ 337.427603] vchan_complete+0x124/0x3b0 [ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0 [ 337.427617] tasklet_action+0x30/0x40 [ 337.427623] __do_softirq+0x1a0/0x5c4 [ 337.427628] irq_exit+0x110/0x140 [ 337.427633] handle_domain_irq+0xa4/0xe0 [ 337.427640] gic_handle_irq+0x64/0x160 [ 337.427644] call_on_irq_stack+0x20/0x4c [ 337.427649] do_interrupt_handler+0x7c/0x90 [ 337.427654] el1_interrupt+0x30/0x80 [ 337.427659] el1h_64_irq_handler+0x18/0x30 [ 337.427663] el1h_64_irq+0x7c/0x80 [ 337.427667] cpuidle_enter_state+0xe4/0x540 [ 337.427674] cpuidle_enter+0x54/0x80 [ 337.427679] do_idle+0x2e0/0x380 [ 337.427685] cpu_startup_entry+0x2c/0x70 [ 337.427690] rest_init+0x114/0x130 [ 337.427695] arch_call_rest_init+0x18/0x24 [ 337.427702] start_kernel+0x380/0x3b4 [ 337.427706] __primary_switched+0xc0/0xc8
CVE-2025-39945 1 Linux 1 Linux Kernel 2026-01-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cnic: Fix use-after-free bugs in cnic_delete_task The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(), which does not guarantee that the delayed work item 'delete_task' has fully completed if it was already running. Additionally, the delayed work item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after the cyclic work items have finished executing, a delayed work item may still exist in the workqueue. This leads to use-after-free scenarios where the cnic_dev is deallocated by cnic_free_dev(), while delete_task remains active and attempt to dereference cnic_dev in cnic_delete_task(). A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) cnic_netdev_event() | cnic_stop_hw() | cnic_delete_task() cnic_cm_stop_bnx2x_hw() | ... cancel_delayed_work() | /* the queue_delayed_work() flush_workqueue() | executes after flush_workqueue()*/ | queue_delayed_work() cnic_free_dev(dev)//free | cnic_delete_task() //new instance | dev = cp->dev; //use Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure that the cyclic delayed work item is properly canceled and that any ongoing execution of the work item completes before the cnic_dev is deallocated. Furthermore, since cancel_delayed_work_sync() uses __flush_work(work, true) to synchronously wait for any currently executing instance of the work item to finish, the flush_workqueue() becomes redundant and should be removed. This bug was identified through static analysis. To reproduce the issue and validate the fix, I simulated the cnic PCI device in QEMU and introduced intentional delays — such as inserting calls to ssleep() within the cnic_delete_task() function — to increase the likelihood of triggering the bug.
CVE-2022-50494 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: intel_powerclamp: Use get_cpu() instead of smp_processor_id() to avoid crash When CPU 0 is offline and intel_powerclamp is used to inject idle, it generates kernel BUG: BUG: using smp_processor_id() in preemptible [00000000] code: bash/15687 caller is debug_smp_processor_id+0x17/0x20 CPU: 4 PID: 15687 Comm: bash Not tainted 5.19.0-rc7+ #57 Call Trace: <TASK> dump_stack_lvl+0x49/0x63 dump_stack+0x10/0x16 check_preemption_disabled+0xdd/0xe0 debug_smp_processor_id+0x17/0x20 powerclamp_set_cur_state+0x7f/0xf9 [intel_powerclamp] ... ... Here CPU 0 is the control CPU by default and changed to the current CPU, if CPU 0 offlined. This check has to be performed under cpus_read_lock(), hence the above warning. Use get_cpu() instead of smp_processor_id() to avoid this BUG. [ rjw: Subject edits ]
CVE-2022-50493 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix crash when I/O abort times out While performing CPU hotplug, a crash with the following stack was seen: Call Trace: qla24xx_process_response_queue+0x42a/0x970 [qla2xxx] qla2x00_start_nvme_mq+0x3a2/0x4b0 [qla2xxx] qla_nvme_post_cmd+0x166/0x240 [qla2xxx] nvme_fc_start_fcp_op.part.0+0x119/0x2e0 [nvme_fc] blk_mq_dispatch_rq_list+0x17b/0x610 __blk_mq_sched_dispatch_requests+0xb0/0x140 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x35/0x90 __blk_mq_delay_run_hw_queue+0x161/0x180 blk_execute_rq+0xbe/0x160 __nvme_submit_sync_cmd+0x16f/0x220 [nvme_core] nvmf_connect_admin_queue+0x11a/0x170 [nvme_fabrics] nvme_fc_create_association.cold+0x50/0x3dc [nvme_fc] nvme_fc_connect_ctrl_work+0x19/0x30 [nvme_fc] process_one_work+0x1e8/0x3c0 On abort timeout, completion was called without checking if the I/O was already completed. Verify that I/O and abort request are indeed outstanding before attempting completion.
CVE-2022-50492 1 Linux 1 Linux Kernel 2026-01-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix use-after-free on probe deferral The bridge counter was never reset when tearing down the DRM device so that stale pointers to deallocated structures would be accessed on the next tear down (e.g. after a second late bind deferral). Given enough bridges and a few probe deferrals this could currently also lead to data beyond the bridge array being corrupted. Patchwork: https://patchwork.freedesktop.org/patch/502665/
CVE-2023-53531 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: null_blk: fix poll request timeout handling When doing io_uring benchmark on /dev/nullb0, it's easy to crash the kernel if poll requests timeout triggered, as reported by David. [1] BUG: kernel NULL pointer dereference, address: 0000000000000008 Workqueue: kblockd blk_mq_timeout_work RIP: 0010:null_timeout_rq+0x4e/0x91 Call Trace: ? null_timeout_rq+0x4e/0x91 blk_mq_handle_expired+0x31/0x4b bt_iter+0x68/0x84 ? bt_tags_iter+0x81/0x81 __sbitmap_for_each_set.constprop.0+0xb0/0xf2 ? __blk_mq_complete_request_remote+0xf/0xf bt_for_each+0x46/0x64 ? __blk_mq_complete_request_remote+0xf/0xf ? percpu_ref_get_many+0xc/0x2a blk_mq_queue_tag_busy_iter+0x14d/0x18e blk_mq_timeout_work+0x95/0x127 process_one_work+0x185/0x263 worker_thread+0x1b5/0x227 This is indeed a race problem between null_timeout_rq() and null_poll(). null_poll() null_timeout_rq() spin_lock(&nq->poll_lock) list_splice_init(&nq->poll_list, &list) spin_unlock(&nq->poll_lock) while (!list_empty(&list)) req = list_first_entry() list_del_init() ... blk_mq_add_to_batch() // req->rq_next = NULL spin_lock(&nq->poll_lock) // rq->queuelist->next == NULL list_del_init(&rq->queuelist) spin_unlock(&nq->poll_lock) Fix these problems by setting requests state to MQ_RQ_COMPLETE under nq->poll_lock protection, in which null_timeout_rq() can safely detect this race and early return. Note this patch just fix the kernel panic when request timeout happen. [1] https://lore.kernel.org/all/3893581.1691785261@warthog.procyon.org.uk/
CVE-2025-39941 1 Linux 1 Linux Kernel 2026-01-23 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: zram: fix slot write race condition Parallel concurrent writes to the same zram index result in leaked zsmalloc handles. Schematically we can have something like this: CPU0 CPU1 zram_slot_lock() zs_free(handle) zram_slot_lock() zram_slot_lock() zs_free(handle) zram_slot_lock() compress compress handle = zs_malloc() handle = zs_malloc() zram_slot_lock zram_set_handle(handle) zram_slot_lock zram_slot_lock zram_set_handle(handle) zram_slot_lock Either CPU0 or CPU1 zsmalloc handle will leak because zs_free() is done too early. In fact, we need to reset zram entry right before we set its new handle, all under the same slot lock scope.
CVE-2025-39940 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm-stripe: fix a possible integer overflow There's a possible integer overflow in stripe_io_hints if we have too large chunk size. Test if the overflow happened, and if it did, don't set limits->io_min and limits->io_opt;
CVE-2025-39938 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: q6apm-lpass-dais: Fix NULL pointer dereference if source graph failed If earlier opening of source graph fails (e.g. ADSP rejects due to incorrect audioreach topology), the graph is closed and "dai_data->graph[dai->id]" is assigned NULL. Preparing the DAI for sink graph continues though and next call to q6apm_lpass_dai_prepare() receives dai_data->graph[dai->id]=NULL leading to NULL pointer exception: qcom-apm gprsvc:service:2:1: Error (1) Processing 0x01001002 cmd qcom-apm gprsvc:service:2:1: DSP returned error[1001002] 1 q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: fail to start APM port 78 q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: ASoC: error at snd_soc_pcm_dai_prepare on TX_CODEC_DMA_TX_3: -22 Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a8 ... Call trace: q6apm_graph_media_format_pcm+0x48/0x120 (P) q6apm_lpass_dai_prepare+0x110/0x1b4 snd_soc_pcm_dai_prepare+0x74/0x108 __soc_pcm_prepare+0x44/0x160 dpcm_be_dai_prepare+0x124/0x1c0
CVE-2025-39934 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: bridge: anx7625: Fix NULL pointer dereference with early IRQ If the interrupt occurs before resource initialization is complete, the interrupt handler/worker may access uninitialized data such as the I2C tcpc_client device, potentially leading to NULL pointer dereference.
CVE-2025-38706 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: core: Check for rtd == NULL in snd_soc_remove_pcm_runtime() snd_soc_remove_pcm_runtime() might be called with rtd == NULL which will leads to null pointer dereference. This was reproduced with topology loading and marking a link as ignore due to missing hardware component on the system. On module removal the soc_tplg_remove_link() would call snd_soc_remove_pcm_runtime() with rtd == NULL since the link was ignored, no runtime was created.
CVE-2025-38702 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: fbdev: fix potential buffer overflow in do_register_framebuffer() The current implementation may lead to buffer overflow when: 1. Unregistration creates NULL gaps in registered_fb[] 2. All array slots become occupied despite num_registered_fb < FB_MAX 3. The registration loop exceeds array bounds Add boundary check to prevent registered_fb[FB_MAX] access.
CVE-2022-50483 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: enetc: avoid buffer leaks on xdp_do_redirect() failure Before enetc_clean_rx_ring_xdp() calls xdp_do_redirect(), each software BD in the RX ring between index orig_i and i can have one of 2 refcount values on its page. We are the owner of the current buffer that is being processed, so the refcount will be at least 1. If the current owner of the buffer at the diametrically opposed index in the RX ring (i.o.w, the other half of this page) has not yet called kfree(), this page's refcount could even be 2. enetc_page_reusable() in enetc_flip_rx_buff() tests for the page refcount against 1, and [ if it's 2 ] does not attempt to reuse it. But if enetc_flip_rx_buff() is put after the xdp_do_redirect() call, the page refcount can have one of 3 values. It can also be 0, if there is no owner of the other page half, and xdp_do_redirect() for this buffer ran so far that it triggered a flush of the devmap/cpumap bulk queue, and the consumers of those bulk queues also freed the buffer, all by the time xdp_do_redirect() returns the execution back to enetc. This is the reason why enetc_flip_rx_buff() is called before xdp_do_redirect(), but there is a big flaw with that reasoning: enetc_flip_rx_buff() will set rx_swbd->page = NULL on both sides of the enetc_page_reusable() branch, and if xdp_do_redirect() returns an error, we call enetc_xdp_free(), which does not deal gracefully with that. In fact, what happens is quite special. The page refcounts start as 1. enetc_flip_rx_buff() figures they're reusable, transfers these rx_swbd->page pointers to a different rx_swbd in enetc_reuse_page(), and bumps the refcount to 2. When xdp_do_redirect() later returns an error, we call the no-op enetc_xdp_free(), but we still haven't lost the reference to that page. A copy of it is still at rx_ring->next_to_alloc, but that has refcount 2 (and there are no concurrent owners of it in flight, to drop the refcount). What really kills the system is when we'll flip the rx_swbd->page the second time around. With an updated refcount of 2, the page will not be reusable and we'll really leak it. Then enetc_new_page() will have to allocate more pages, which will then eventually leak again on further errors from xdp_do_redirect(). The problem, summarized, is that we zeroize rx_swbd->page before we're completely done with it, and this makes it impossible for the error path to do something with it. Since the packet is potentially multi-buffer and therefore the rx_swbd->page is potentially an array, manual passing of the old pointers between enetc_flip_rx_buff() and enetc_xdp_free() is a bit difficult. For the sake of going with a simple solution, we accept the possibility of racing with xdp_do_redirect(), and we move the flip procedure to execute only on the redirect success path. By racing, I mean that the page may be deemed as not reusable by enetc (having a refcount of 0), but there will be no leak in that case, either. Once we accept that, we have something better to do with buffers on XDP_REDIRECT failure. Since we haven't performed half-page flipping yet, we won't, either (and this way, we can avoid enetc_xdp_free() completely, which gives the entire page to the slab allocator). Instead, we'll call enetc_xdp_drop(), which will recycle this half of the buffer back to the RX ring.
CVE-2022-50482 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Clean up si_domain in the init_dmars() error path A splat from kmem_cache_destroy() was seen with a kernel prior to commit ee2653bbe89d ("iommu/vt-d: Remove domain and devinfo mempool") when there was a failure in init_dmars(), because the iommu_domain cache still had objects. While the mempool code is now gone, there still is a leak of the si_domain memory if init_dmars() fails. So clean up si_domain in the init_dmars() error path.