Filtered by vendor Linux
Subscriptions
Total
16791 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-40164 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: usbnet: Fix using smp_processor_id() in preemptible code warnings Syzbot reported the following warning: BUG: using smp_processor_id() in preemptible [00000000] code: dhcpcd/2879 caller is usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331 CPU: 1 UID: 0 PID: 2879 Comm: dhcpcd Not tainted 6.15.0-rc4-syzkaller-00098-g615dca38c2ea #0 PREEMPT(voluntary) Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120 check_preemption_disabled+0xd0/0xe0 lib/smp_processor_id.c:49 usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331 usbnet_resume_rx+0x4b/0x170 drivers/net/usb/usbnet.c:708 usbnet_change_mtu+0x1be/0x220 drivers/net/usb/usbnet.c:417 __dev_set_mtu net/core/dev.c:9443 [inline] netif_set_mtu_ext+0x369/0x5c0 net/core/dev.c:9496 netif_set_mtu+0xb0/0x160 net/core/dev.c:9520 dev_set_mtu+0xae/0x170 net/core/dev_api.c:247 dev_ifsioc+0xa31/0x18d0 net/core/dev_ioctl.c:572 dev_ioctl+0x223/0x10e0 net/core/dev_ioctl.c:821 sock_do_ioctl+0x19d/0x280 net/socket.c:1204 sock_ioctl+0x42f/0x6a0 net/socket.c:1311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f For historical and portability reasons, the netif_rx() is usually run in the softirq or interrupt context, this commit therefore add local_bh_disable/enable() protection in the usbnet_resume_rx(). | ||||
| CVE-2025-38361 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check dce_hwseq before dereferencing it [WHAT] hws was checked for null earlier in dce110_blank_stream, indicating hws can be null, and should be checked whenever it is used. (cherry picked from commit 79db43611ff61280b6de58ce1305e0b2ecf675ad) | ||||
| CVE-2025-38248 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: bridge: mcast: Fix use-after-free during router port configuration The bridge maintains a global list of ports behind which a multicast router resides. The list is consulted during forwarding to ensure multicast packets are forwarded to these ports even if the ports are not member in the matching MDB entry. When per-VLAN multicast snooping is enabled, the per-port multicast context is disabled on each port and the port is removed from the global router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 # ip link add name dummy1 up master br1 type dummy # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 1 $ bridge -d mdb show | grep router However, the port can be re-added to the global list even when per-VLAN multicast snooping is enabled: # ip link set dev dummy1 type bridge_slave mcast_router 0 # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement br_multicast_{enable, disable}_port functions"), when per-VLAN multicast snooping is enabled, multicast disablement on a port will disable the per-{port, VLAN} multicast contexts and not the per-port one. As a result, a port will remain in the global router port list even after it is deleted. This will lead to a use-after-free [1] when the list is traversed (when adding a new port to the list, for example): # ip link del dev dummy1 # ip link add name dummy2 up master br1 type dummy # ip link set dev dummy2 type bridge_slave mcast_router 2 Similarly, stale entries can also be found in the per-VLAN router port list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN} contexts are disabled on each port and the port is removed from the per-VLAN router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1 # ip link add name dummy1 up master br1 type dummy # bridge vlan add vid 2 dev dummy1 # bridge vlan global set vid 2 dev br1 mcast_snooping 1 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 0 $ bridge vlan global show dev br1 vid 2 | grep router However, the port can be re-added to the per-VLAN list even when per-VLAN multicast snooping is disabled: # bridge vlan set vid 2 dev dummy1 mcast_router 0 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 When the VLAN is deleted from the port, the per-{port, VLAN} multicast context will not be disabled since multicast snooping is not enabled on the VLAN. As a result, the port will remain in the per-VLAN router port list even after it is no longer member in the VLAN. This will lead to a use-after-free [2] when the list is traversed (when adding a new port to the list, for example): # ip link add name dummy2 up master br1 type dummy # bridge vlan add vid 2 dev dummy2 # bridge vlan del vid 2 dev dummy1 # bridge vlan set vid 2 dev dummy2 mcast_router 2 Fix these issues by removing the port from the relevant (global or per-VLAN) router port list in br_multicast_port_ctx_deinit(). The function is invoked during port deletion with the per-port multicast context and during VLAN deletion with the per-{port, VLAN} multicast context. Note that deleting the multicast router timer is not enough as it only takes care of the temporary multicast router states (1 or 3) and not the permanent one (2). [1] BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560 Write of size 8 at addr ffff888004a67328 by task ip/384 [...] Call Trace: <TASK> dump_stack ---truncated--- | ||||
| CVE-2025-38232 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: NFSD: fix race between nfsd registration and exports_proc As of now nfsd calls create_proc_exports_entry() at start of init_nfsd and cleanup by remove_proc_entry() at last of exit_nfsd. Which causes kernel OOPs if there is race between below 2 operations: (i) exportfs -r (ii) mount -t nfsd none /proc/fs/nfsd for 5.4 kernel ARM64: CPU 1: el1_irq+0xbc/0x180 arch_counter_get_cntvct+0x14/0x18 running_clock+0xc/0x18 preempt_count_add+0x88/0x110 prep_new_page+0xb0/0x220 get_page_from_freelist+0x2d8/0x1778 __alloc_pages_nodemask+0x15c/0xef0 __vmalloc_node_range+0x28c/0x478 __vmalloc_node_flags_caller+0x8c/0xb0 kvmalloc_node+0x88/0xe0 nfsd_init_net+0x6c/0x108 [nfsd] ops_init+0x44/0x170 register_pernet_operations+0x114/0x270 register_pernet_subsys+0x34/0x50 init_nfsd+0xa8/0x718 [nfsd] do_one_initcall+0x54/0x2e0 CPU 2 : Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 PC is at : exports_net_open+0x50/0x68 [nfsd] Call trace: exports_net_open+0x50/0x68 [nfsd] exports_proc_open+0x2c/0x38 [nfsd] proc_reg_open+0xb8/0x198 do_dentry_open+0x1c4/0x418 vfs_open+0x38/0x48 path_openat+0x28c/0xf18 do_filp_open+0x70/0xe8 do_sys_open+0x154/0x248 Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu(). and same is happening on latest 6.14 kernel as well: [ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty ... [ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48 ... [ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4 ... [ 285.469695] Call trace: [ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P) [ 285.470488] seq_read+0xe0/0x11c [ 285.470675] proc_reg_read+0x9c/0xf0 [ 285.470874] vfs_read+0xc4/0x2fc [ 285.471057] ksys_read+0x6c/0xf4 [ 285.471231] __arm64_sys_read+0x1c/0x28 [ 285.471428] invoke_syscall+0x44/0x100 [ 285.471633] el0_svc_common.constprop.0+0x40/0xe0 [ 285.471870] do_el0_svc_compat+0x1c/0x34 [ 285.472073] el0_svc_compat+0x2c/0x80 [ 285.472265] el0t_32_sync_handler+0x90/0x140 [ 285.472473] el0t_32_sync+0x19c/0x1a0 [ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3) [ 285.473422] ---[ end trace 0000000000000000 ]--- It reproduced simply with below script: while [ 1 ] do /exportfs -r done & while [ 1 ] do insmod /nfsd.ko mount -t nfsd none /proc/fs/nfsd umount /proc/fs/nfsd rmmod nfsd done & So exporting interfaces to user space shall be done at last and cleanup at first place. With change there is no Kernel OOPs. | ||||
| CVE-2025-38011 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: csa unmap use uninterruptible lock After process exit to unmap csa and free GPU vm, if signal is accepted and then waiting to take vm lock is interrupted and return, it causes memory leaking and below warning backtrace. Change to use uninterruptible wait lock fix the issue. WARNING: CPU: 69 PID: 167800 at amd/amdgpu/amdgpu_kms.c:1525 amdgpu_driver_postclose_kms+0x294/0x2a0 [amdgpu] Call Trace: <TASK> drm_file_free.part.0+0x1da/0x230 [drm] drm_close_helper.isra.0+0x65/0x70 [drm] drm_release+0x6a/0x120 [drm] amdgpu_drm_release+0x51/0x60 [amdgpu] __fput+0x9f/0x280 ____fput+0xe/0x20 task_work_run+0x67/0xa0 do_exit+0x217/0x3c0 do_group_exit+0x3b/0xb0 get_signal+0x14a/0x8d0 arch_do_signal_or_restart+0xde/0x100 exit_to_user_mode_loop+0xc1/0x1a0 exit_to_user_mode_prepare+0xf4/0x100 syscall_exit_to_user_mode+0x17/0x40 do_syscall_64+0x69/0xc0 (cherry picked from commit 7dbbfb3c171a6f63b01165958629c9c26abf38ab) | ||||
| CVE-2025-37945 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: phy: allow MDIO bus PM ops to start/stop state machine for phylink-controlled PHY DSA has 2 kinds of drivers: 1. Those who call dsa_switch_suspend() and dsa_switch_resume() from their device PM ops: qca8k-8xxx, bcm_sf2, microchip ksz 2. Those who don't: all others. The above methods should be optional. For type 1, dsa_switch_suspend() calls dsa_user_suspend() -> phylink_stop(), and dsa_switch_resume() calls dsa_user_resume() -> phylink_start(). These seem good candidates for setting mac_managed_pm = true because that is essentially its definition [1], but that does not seem to be the biggest problem for now, and is not what this change focuses on. Talking strictly about the 2nd category of DSA drivers here (which do not have MAC managed PM, meaning that for their attached PHYs, mdio_bus_phy_suspend() and mdio_bus_phy_resume() should run in full), I have noticed that the following warning from mdio_bus_phy_resume() is triggered: WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && phydev->state != PHY_UP); because the PHY state machine is running. It's running as a result of a previous dsa_user_open() -> ... -> phylink_start() -> phy_start() having been initiated by the user. The previous mdio_bus_phy_suspend() was supposed to have called phy_stop_machine(), but it didn't. So this is why the PHY is in state PHY_NOLINK by the time mdio_bus_phy_resume() runs. mdio_bus_phy_suspend() did not call phy_stop_machine() because for phylink, the phydev->adjust_link function pointer is NULL. This seems a technicality introduced by commit fddd91016d16 ("phylib: fix PAL state machine restart on resume"). That commit was written before phylink existed, and was intended to avoid crashing with consumer drivers which don't use the PHY state machine - phylink always does, when using a PHY. But phylink itself has historically not been developed with suspend/resume in mind, and apparently not tested too much in that scenario, allowing this bug to exist unnoticed for so long. Plus, prior to the WARN_ON(), it would have likely been invisible. This issue is not in fact restricted to type 2 DSA drivers (according to the above ad-hoc classification), but can be extrapolated to any MAC driver with phylink and MDIO-bus-managed PHY PM ops. DSA is just where the issue was reported. Assuming mac_managed_pm is set correctly, a quick search indicates the following other drivers might be affected: $ grep -Zlr PHYLINK_NETDEV drivers/ | xargs -0 grep -L mac_managed_pm drivers/net/ethernet/atheros/ag71xx.c drivers/net/ethernet/microchip/sparx5/sparx5_main.c drivers/net/ethernet/microchip/lan966x/lan966x_main.c drivers/net/ethernet/freescale/dpaa2/dpaa2-mac.c drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c drivers/net/ethernet/freescale/dpaa/dpaa_eth.c drivers/net/ethernet/freescale/ucc_geth.c drivers/net/ethernet/freescale/enetc/enetc_pf_common.c drivers/net/ethernet/marvell/mvpp2/mvpp2_main.c drivers/net/ethernet/marvell/mvneta.c drivers/net/ethernet/marvell/prestera/prestera_main.c drivers/net/ethernet/mediatek/mtk_eth_soc.c drivers/net/ethernet/altera/altera_tse_main.c drivers/net/ethernet/wangxun/txgbe/txgbe_phy.c drivers/net/ethernet/meta/fbnic/fbnic_phylink.c drivers/net/ethernet/tehuti/tn40_phy.c drivers/net/ethernet/mscc/ocelot_net.c Make the existing conditions dependent on the PHY device having a phydev->phy_link_change() implementation equal to the default phy_link_change() provided by phylib. Otherwise, we implicitly know that the phydev has the phylink-provided phylink_phy_change() callback, and when phylink is used, the PHY state machine always needs to be stopped/ started on the suspend/resume path. The code is structured as such that if phydev->phy_link_change() is absent, it is a matter of time until the kernel will crash - no need to further complicate the test. Thus, for the situation where the PM is not managed b ---truncated--- | ||||
| CVE-2025-37926 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_session_rpc_open A UAF issue can occur due to a race condition between ksmbd_session_rpc_open() and __session_rpc_close(). Add rpc_lock to the session to protect it. | ||||
| CVE-2024-58097 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix RCU stall while reaping monitor destination ring While processing the monitor destination ring, MSDUs are reaped from the link descriptor based on the corresponding buf_id. However, sometimes the driver cannot obtain a valid buffer corresponding to the buf_id received from the hardware. This causes an infinite loop in the destination processing, resulting in a kernel crash. kernel log: ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309 ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309 ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed Fix this by skipping the problematic buf_id and reaping the next entry, replacing the break with the next MSDU processing. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30 Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 | ||||
| CVE-2024-26655 | 1 Linux | 1 Linux Kernel | 2026-01-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Fix memory leak in posix_clock_open() If the clk ops.open() function returns an error, we don't release the pccontext we allocated for this clock. Re-organize the code slightly to make it all more obvious. | ||||
| CVE-2026-0908 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 8.8 High |
| Use after free in ANGLE in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Low) | ||||
| CVE-2026-0907 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 9.8 Critical |
| Incorrect security UI in Split View in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low) | ||||
| CVE-2026-0906 | 4 Apple, Google, Linux and 1 more | 5 Macos, Android, Chrome and 2 more | 2026-01-29 | 9.8 Critical |
| Incorrect security UI in Google Chrome on Android prior to 144.0.7559.59 allowed a remote attacker to spoof the contents of the Omnibox (URL bar) via a crafted HTML page. (Chromium security severity: Low) | ||||
| CVE-2026-0905 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 9.8 Critical |
| Insufficient policy enforcement in Network in Google Chrome prior to 144.0.7559.59 allowed an attack who obtained a network log file to potentially obtain potentially sensitive information via a network log file. (Chromium security severity: Medium) | ||||
| CVE-2026-0904 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 5.4 Medium |
| Incorrect security UI in Digital Credentials in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to perform domain spoofing via a crafted HTML page. (Chromium security severity: Medium) | ||||
| CVE-2026-0903 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 5.4 Medium |
| Inappropriate implementation in Downloads in Google Chrome on Windows prior to 144.0.7559.59 allowed a remote attacker to bypass dangerous file type protections via a malicious file. (Chromium security severity: Medium) | ||||
| CVE-2026-0902 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 8.8 High |
| Inappropriate implementation in V8 in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) | ||||
| CVE-2026-0900 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 8.8 High |
| Inappropriate implementation in V8 in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2026-0899 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2026-01-29 | 8.8 High |
| Out of bounds memory access in V8 in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2026-23014 | 1 Linux | 1 Linux Kernel | 2026-01-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: perf: Ensure swevent hrtimer is properly destroyed With the change to hrtimer_try_to_cancel() in perf_swevent_cancel_hrtimer() it appears possible for the hrtimer to still be active by the time the event gets freed. Make sure the event does a full hrtimer_cancel() on the free path by installing a perf_event::destroy handler. | ||||
| CVE-2024-1545 | 3 Linux, Microsoft, Wolfssl | 4 Linux Kernel, Windows, Wolfcrypt and 1 more | 2026-01-27 | 5.9 Medium |
| Fault Injection vulnerability in RsaPrivateDecryption function in wolfssl/wolfcrypt/src/rsa.c in WolfSSL wolfssl5.6.6 on Linux/Windows allows remote attacker co-resides in the same system with a victim process to disclose information and escalate privileges via Rowhammer fault injection to the RsaKey structure. | ||||