Filtered by vendor Fedoraproject
Subscriptions
Filtered by product Fedora
Subscriptions
Total
5267 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-26377 | 4 Apache, Fedoraproject, Netapp and 1 more | 6 Http Server, Fedora, Clustered Data Ontap and 3 more | 2025-05-01 | 7.5 High |
Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.53 and prior versions. | ||||
CVE-2022-28615 | 4 Apache, Fedoraproject, Netapp and 1 more | 6 Http Server, Fedora, Clustered Data Ontap and 3 more | 2025-05-01 | 9.1 Critical |
Apache HTTP Server 2.4.53 and earlier may crash or disclose information due to a read beyond bounds in ap_strcmp_match() when provided with an extremely large input buffer. While no code distributed with the server can be coerced into such a call, third-party modules or lua scripts that use ap_strcmp_match() may hypothetically be affected. | ||||
CVE-2022-30556 | 4 Apache, Fedoraproject, Netapp and 1 more | 5 Http Server, Fedora, Clustered Data Ontap and 2 more | 2025-05-01 | 7.5 High |
Apache HTTP Server 2.4.53 and earlier may return lengths to applications calling r:wsread() that point past the end of the storage allocated for the buffer. | ||||
CVE-2022-31813 | 4 Apache, Fedoraproject, Netapp and 1 more | 6 Http Server, Fedora, Clustered Data Ontap and 3 more | 2025-05-01 | 9.8 Critical |
Apache HTTP Server 2.4.53 and earlier may not send the X-Forwarded-* headers to the origin server based on client side Connection header hop-by-hop mechanism. This may be used to bypass IP based authentication on the origin server/application. | ||||
CVE-2022-45062 | 3 Debian, Fedoraproject, Xfce | 3 Debian Linux, Fedora, Xfce4-settings | 2025-05-01 | 9.8 Critical |
In Xfce xfce4-settings before 4.16.4 and 4.17.x before 4.17.1, there is an argument injection vulnerability in xfce4-mime-helper. | ||||
CVE-2022-45061 | 4 Fedoraproject, Netapp, Python and 1 more | 13 Fedora, Active Iq Unified Manager, Bootstrap Os and 10 more | 2025-05-01 | 7.5 High |
An issue was discovered in Python before 3.11.1. An unnecessary quadratic algorithm exists in one path when processing some inputs to the IDNA (RFC 3490) decoder, such that a crafted, unreasonably long name being presented to the decoder could lead to a CPU denial of service. Hostnames are often supplied by remote servers that could be controlled by a malicious actor; in such a scenario, they could trigger excessive CPU consumption on the client attempting to make use of an attacker-supplied supposed hostname. For example, the attack payload could be placed in the Location header of an HTTP response with status code 302. A fix is planned in 3.11.1, 3.10.9, 3.9.16, 3.8.16, and 3.7.16. | ||||
CVE-2022-45060 | 5 Debian, Fedoraproject, Redhat and 2 more | 11 Debian Linux, Fedora, Enterprise Linux and 8 more | 2025-05-01 | 7.5 High |
An HTTP Request Forgery issue was discovered in Varnish Cache 5.x and 6.x before 6.0.11, 7.x before 7.1.2, and 7.2.x before 7.2.1. An attacker may introduce characters through HTTP/2 pseudo-headers that are invalid in the context of an HTTP/1 request line, causing the Varnish server to produce invalid HTTP/1 requests to the backend. This could, in turn, be used to exploit vulnerabilities in a server behind the Varnish server. Note: the 6.0.x LTS series (before 6.0.11) is affected. | ||||
CVE-2022-45059 | 2 Fedoraproject, Varnish Cache Project | 2 Fedora, Varnish Cache | 2025-05-01 | 7.5 High |
An issue was discovered in Varnish Cache 7.x before 7.1.2 and 7.2.x before 7.2.1. A request smuggling attack can be performed on Varnish Cache servers by requesting that certain headers are made hop-by-hop, preventing the Varnish Cache servers from forwarding critical headers to the backend. | ||||
CVE-2022-37290 | 2 Fedoraproject, Gnome | 2 Fedora, Nautilus | 2025-05-01 | 5.5 Medium |
GNOME Nautilus 42.2 allows a NULL pointer dereference and get_basename application crash via a pasted ZIP archive. | ||||
CVE-2023-48795 | 43 9bis, Apache, Apple and 40 more | 78 Kitty, Sshd, Sshj and 75 more | 2025-05-01 | 5.9 Medium |
The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust. | ||||
CVE-2023-38545 | 5 Fedoraproject, Haxx, Microsoft and 2 more | 19 Fedora, Libcurl, Windows 10 1809 and 16 more | 2025-05-01 | 8.8 High |
This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy handshake. When curl is asked to pass along the host name to the SOCKS5 proxy to allow that to resolve the address instead of it getting done by curl itself, the maximum length that host name can be is 255 bytes. If the host name is detected to be longer, curl switches to local name resolving and instead passes on the resolved address only. Due to this bug, the local variable that means "let the host resolve the name" could get the wrong value during a slow SOCKS5 handshake, and contrary to the intention, copy the too long host name to the target buffer instead of copying just the resolved address there. The target buffer being a heap based buffer, and the host name coming from the URL that curl has been told to operate with. | ||||
CVE-2023-38552 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Node.js, Enterprise Linux | 2025-04-30 | 7.5 High |
When the Node.js policy feature checks the integrity of a resource against a trusted manifest, the application can intercept the operation and return a forged checksum to the node's policy implementation, thus effectively disabling the integrity check. Impacts: This vulnerability affects all users using the experimental policy mechanism in all active release lines: 18.x and, 20.x. Please note that at the time this CVE was issued, the policy mechanism is an experimental feature of Node.js. | ||||
CVE-2023-39332 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Node.js, Enterprise Linux | 2025-04-30 | 9.8 Critical |
Various `node:fs` functions allow specifying paths as either strings or `Uint8Array` objects. In Node.js environments, the `Buffer` class extends the `Uint8Array` class. Node.js prevents path traversal through strings (see CVE-2023-30584) and `Buffer` objects (see CVE-2023-32004), but not through non-`Buffer` `Uint8Array` objects. This is distinct from CVE-2023-32004 which only referred to `Buffer` objects. However, the vulnerability follows the same pattern using `Uint8Array` instead of `Buffer`. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
CVE-2023-32003 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-30 | 5.3 Medium |
`fs.mkdtemp()` and `fs.mkdtempSync()` can be used to bypass the permission model check using a path traversal attack. This flaw arises from a missing check in the fs.mkdtemp() API and the impact is a malicious actor could create an arbitrary directory. This vulnerability affects all users using the experimental permission model in Node.js 20. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
CVE-2023-32006 | 3 Fedoraproject, Nodejs, Redhat | 4 Fedora, Node.js, Enterprise Linux and 1 more | 2025-04-30 | 8.8 High |
The use of `module.constructor.createRequire()` can bypass the policy mechanism and require modules outside of the policy.json definition for a given module. This vulnerability affects all users using the experimental policy mechanism in all active release lines: 16.x, 18.x, and, 20.x. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js. | ||||
CVE-2023-32004 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-30 | 8.8 High |
A vulnerability has been discovered in Node.js version 20, specifically within the experimental permission model. This flaw relates to improper handling of Buffers in file system APIs causing a traversal path to bypass when verifying file permissions. This vulnerability affects all users using the experimental permission model in Node.js 20. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
CVE-2023-30589 | 3 Fedoraproject, Nodejs, Redhat | 4 Fedora, Node.js, Enterprise Linux and 1 more | 2025-04-30 | 7.5 High |
The llhttp parser in the http module in Node v20.2.0 does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). The CR character (without LF) is sufficient to delimit HTTP header fields in the llhttp parser. According to RFC7230 section 3, only the CRLF sequence should delimit each header-field. This impacts all Node.js active versions: v16, v18, and, v20 | ||||
CVE-2022-32213 | 7 Debian, Fedoraproject, Llhttp and 4 more | 9 Debian Linux, Fedora, Llhttp and 6 more | 2025-04-30 | 6.5 Medium |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS). | ||||
CVE-2022-32212 | 5 Debian, Fedoraproject, Nodejs and 2 more | 7 Debian Linux, Fedora, Node.js and 4 more | 2025-04-30 | 8.1 High |
A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.20.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks. | ||||
CVE-2022-32215 | 7 Debian, Fedoraproject, Llhttp and 4 more | 9 Debian Linux, Fedora, Llhttp and 6 more | 2025-04-30 | 6.5 Medium |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS). |