Filtered by vendor Redhat Subscriptions
Filtered by product Enterprise Linux Subscriptions
Total 15513 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-26938 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/i915/bios: Tolerate devdata==NULL in intel_bios_encoder_supports_dp_dual_mode() If we have no VBT, or the VBT didn't declare the encoder in question, we won't have the 'devdata' for the encoder. Instead of oopsing just bail early. We won't be able to tell whether the port is DP++ or not, but so be it. (cherry picked from commit 26410896206342c8a80d2b027923e9ee7d33b733)
CVE-2024-26946 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address Read from an unsafe address with copy_from_kernel_nofault() in arch_adjust_kprobe_addr() because this function is used before checking the address is in text or not. Syzcaller bot found a bug and reported the case if user specifies inaccessible data area, arch_adjust_kprobe_addr() will cause a kernel panic. [ mingo: Clarified the comment. ]
CVE-2024-26947 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is:0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/Zbtdue57RO0QScJM@linux.ibm.com/
CVE-2024-26953 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: esp: fix bad handling of pages from page_pool When the skb is reorganized during esp_output (!esp->inline), the pages coming from the original skb fragments are supposed to be released back to the system through put_page. But if the skb fragment pages are originating from a page_pool, calling put_page on them will trigger a page_pool leak which will eventually result in a crash. This leak can be easily observed when using CONFIG_DEBUG_VM and doing ipsec + gre (non offloaded) forwarding: BUG: Bad page state in process ksoftirqd/16 pfn:1451b6 page:00000000de2b8d32 refcount:0 mapcount:0 mapping:0000000000000000 index:0x1451b6000 pfn:0x1451b6 flags: 0x200000000000000(node=0|zone=2) page_type: 0xffffffff() raw: 0200000000000000 dead000000000040 ffff88810d23c000 0000000000000000 raw: 00000001451b6000 0000000000000001 00000000ffffffff 0000000000000000 page dumped because: page_pool leak Modules linked in: ip_gre gre mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat nf_nat xt_addrtype br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay zram zsmalloc fuse [last unloaded: mlx5_core] CPU: 16 PID: 96 Comm: ksoftirqd/16 Not tainted 6.8.0-rc4+ #22 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x36/0x50 bad_page+0x70/0xf0 free_unref_page_prepare+0x27a/0x460 free_unref_page+0x38/0x120 esp_ssg_unref.isra.0+0x15f/0x200 esp_output_tail+0x66d/0x780 esp_xmit+0x2c5/0x360 validate_xmit_xfrm+0x313/0x370 ? validate_xmit_skb+0x1d/0x330 validate_xmit_skb_list+0x4c/0x70 sch_direct_xmit+0x23e/0x350 __dev_queue_xmit+0x337/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x25e/0x580 iptunnel_xmit+0x19b/0x240 ip_tunnel_xmit+0x5fb/0xb60 ipgre_xmit+0x14d/0x280 [ip_gre] dev_hard_start_xmit+0xc3/0x1c0 __dev_queue_xmit+0x208/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x1ca/0x580 ip_sublist_rcv_finish+0x32/0x40 ip_sublist_rcv+0x1b2/0x1f0 ? ip_rcv_finish_core.constprop.0+0x460/0x460 ip_list_rcv+0x103/0x130 __netif_receive_skb_list_core+0x181/0x1e0 netif_receive_skb_list_internal+0x1b3/0x2c0 napi_gro_receive+0xc8/0x200 gro_cell_poll+0x52/0x90 __napi_poll+0x25/0x1a0 net_rx_action+0x28e/0x300 __do_softirq+0xc3/0x276 ? sort_range+0x20/0x20 run_ksoftirqd+0x1e/0x30 smpboot_thread_fn+0xa6/0x130 kthread+0xcd/0x100 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x31/0x50 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK> The suggested fix is to introduce a new wrapper (skb_page_unref) that covers page refcounting for page_pool pages as well.
CVE-2024-36025 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix off by one in qla_edif_app_getstats() The app_reply->elem[] array is allocated earlier in this function and it has app_req.num_ports elements. Thus this > comparison needs to be >= to prevent memory corruption.
CVE-2024-36961 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal/debugfs: Fix two locking issues with thermal zone debug With the current thermal zone locking arrangement in the debugfs code, user space can open the "mitigations" file for a thermal zone before the zone's debugfs pointer is set which will result in a NULL pointer dereference in tze_seq_start(). Moreover, thermal_debug_tz_remove() is not called under the thermal zone lock, so it can run in parallel with the other functions accessing the thermal zone's struct thermal_debugfs object. Then, it may clear tz->debugfs after one of those functions has checked it and the struct thermal_debugfs object may be freed prematurely. To address the first problem, pass a pointer to the thermal zone's struct thermal_debugfs object to debugfs_create_file() in thermal_debug_tz_add() and make tze_seq_start(), tze_seq_next(), tze_seq_stop(), and tze_seq_show() retrieve it from s->private instead of a pointer to the thermal zone object. This will ensure that tz_debugfs will be valid across the "mitigations" file accesses until thermal_debugfs_remove_id() called by thermal_debug_tz_remove() removes that file. To address the second problem, use tz->lock in thermal_debug_tz_remove() around the tz->debugfs value check (in case the same thermal zone is removed at the same time in two different threads) and its reset to NULL. Cc :6.8+ <stable@vger.kernel.org> # 6.8+
CVE-2024-36945 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix neighbour and rtable leak in smc_ib_find_route() In smc_ib_find_route(), the neighbour found by neigh_lookup() and rtable resolved by ip_route_output_flow() are not released or put before return. It may cause the refcount leak, so fix it.
CVE-2024-36936 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: efi/unaccepted: touch soft lockup during memory accept Commit 50e782a86c98 ("efi/unaccepted: Fix soft lockups caused by parallel memory acceptance") has released the spinlock so other CPUs can do memory acceptance in parallel and not triggers softlockup on other CPUs. However the softlock up was intermittent shown up if the memory of the TD guest is large, and the timeout of softlockup is set to 1 second: RIP: 0010:_raw_spin_unlock_irqrestore Call Trace: ? __hrtimer_run_queues <IRQ> ? hrtimer_interrupt ? watchdog_timer_fn ? __sysvec_apic_timer_interrupt ? __pfx_watchdog_timer_fn ? sysvec_apic_timer_interrupt </IRQ> ? __hrtimer_run_queues <TASK> ? hrtimer_interrupt ? asm_sysvec_apic_timer_interrupt ? _raw_spin_unlock_irqrestore ? __sysvec_apic_timer_interrupt ? sysvec_apic_timer_interrupt accept_memory try_to_accept_memory do_huge_pmd_anonymous_page get_page_from_freelist __handle_mm_fault __alloc_pages __folio_alloc ? __tdx_hypercall handle_mm_fault vma_alloc_folio do_user_addr_fault do_huge_pmd_anonymous_page exc_page_fault ? __do_huge_pmd_anonymous_page asm_exc_page_fault __handle_mm_fault When the local irq is enabled at the end of accept_memory(), the softlockup detects that the watchdog on single CPU has not been fed for a while. That is to say, even other CPUs will not be blocked by spinlock, the current CPU might be stunk with local irq disabled for a while, which hurts not only nmi watchdog but also softlockup. Chao Gao pointed out that the memory accept could be time costly and there was similar report before. Thus to avoid any softlocup detection during this stage, give the softlockup a flag to skip the timeout check at the end of accept_memory(), by invoking touch_softlockup_watchdog().
CVE-2024-36917 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix overflow in blk_ioctl_discard() There is no check for overflow of 'start + len' in blk_ioctl_discard(). Hung task occurs if submit an discard ioctl with the following param: start = 0x80000000000ff000, len = 0x8000000000fff000; Add the overflow validation now.
CVE-2024-38586 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: r8169: Fix possible ring buffer corruption on fragmented Tx packets. An issue was found on the RTL8125b when transmitting small fragmented packets, whereby invalid entries were inserted into the transmit ring buffer, subsequently leading to calls to dma_unmap_single() with a null address. This was caused by rtl8169_start_xmit() not noticing changes to nr_frags which may occur when small packets are padded (to work around hardware quirks) in rtl8169_tso_csum_v2(). To fix this, postpone inspecting nr_frags until after any padding has been applied.
CVE-2022-48757 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net: fix information leakage in /proc/net/ptype In one net namespace, after creating a packet socket without binding it to a device, users in other net namespaces can observe the new `packet_type` added by this packet socket by reading `/proc/net/ptype` file. This is minor information leakage as packet socket is namespace aware. Add a net pointer in `packet_type` to keep the net namespace of of corresponding packet socket. In `ptype_seq_show`, this net pointer must be checked when it is not NULL.
CVE-2024-38635 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: soundwire: cadence: fix invalid PDI offset For some reason, we add an offset to the PDI, presumably to skip the PDI0 and PDI1 which are reserved for BPT. This code is however completely wrong and leads to an out-of-bounds access. We were just lucky so far since we used only a couple of PDIs and remained within the PDI array bounds. A Fixes: tag is not provided since there are no known platforms where the out-of-bounds would be accessed, and the initial code had problems as well. A follow-up patch completely removes this useless offset.
CVE-2022-48760 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix hang in usb_kill_urb by adding memory barriers The syzbot fuzzer has identified a bug in which processes hang waiting for usb_kill_urb() to return. It turns out the issue is not unlinking the URB; that works just fine. Rather, the problem arises when the wakeup notification that the URB has completed is not received. The reason is memory-access ordering on SMP systems. In outline form, usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on different CPUs perform the following actions: CPU 0 CPU 1 ---------------------------- --------------------------------- usb_kill_urb(): __usb_hcd_giveback_urb(): ... ... atomic_inc(&urb->reject); atomic_dec(&urb->use_count); ... ... wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); if (atomic_read(&urb->reject)) wake_up(&usb_kill_urb_queue); Confining your attention to urb->reject and urb->use_count, you can see that the overall pattern of accesses on CPU 0 is: write urb->reject, then read urb->use_count; whereas the overall pattern of accesses on CPU 1 is: write urb->use_count, then read urb->reject. This pattern is referred to in memory-model circles as SB (for "Store Buffering"), and it is well known that without suitable enforcement of the desired order of accesses -- in the form of memory barriers -- it is entirely possible for one or both CPUs to execute their reads ahead of their writes. The end result will be that sometimes CPU 0 sees the old un-decremented value of urb->use_count while CPU 1 sees the old un-incremented value of urb->reject. Consequently CPU 0 ends up on the wait queue and never gets woken up, leading to the observed hang in usb_kill_urb(). The same pattern of accesses occurs in usb_poison_urb() and the failure pathway of usb_hcd_submit_urb(). The problem is fixed by adding suitable memory barriers. To provide proper memory-access ordering in the SB pattern, a full barrier is required on both CPUs. The atomic_inc() and atomic_dec() accesses themselves don't provide any memory ordering, but since they are present, we can use the optimized smp_mb__after_atomic() memory barrier in the various routines to obtain the desired effect. This patch adds the necessary memory barriers.
CVE-2024-39491 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: cs35l56: Fix lifetime of cs_dsp instance The cs_dsp instance is initialized in the driver probe() so it should be freed in the driver remove(). Also fix a missing call to cs_dsp_remove() in the error path of cs35l56_hda_common_probe(). The call to cs_dsp_remove() was being done in the component unbind callback cs35l56_hda_unbind(). This meant that if the driver was unbound and then re-bound it would be using an uninitialized cs_dsp instance. It is best to initialize the cs_dsp instance in probe() so that it can return an error if it fails. The component binding API doesn't have any error handling so there's no way to handle a failure if cs_dsp was initialized in the bind.
CVE-2024-39488 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: asm-bug: Add .align 2 to the end of __BUG_ENTRY When CONFIG_DEBUG_BUGVERBOSE=n, we fail to add necessary padding bytes to bug_table entries, and as a result the last entry in a bug table will be ignored, potentially leading to an unexpected panic(). All prior entries in the table will be handled correctly. The arm64 ABI requires that struct fields of up to 8 bytes are naturally-aligned, with padding added within a struct such that struct are suitably aligned within arrays. When CONFIG_DEBUG_BUGVERPOSE=y, the layout of a bug_entry is: struct bug_entry { signed int bug_addr_disp; // 4 bytes signed int file_disp; // 4 bytes unsigned short line; // 2 bytes unsigned short flags; // 2 bytes } ... with 12 bytes total, requiring 4-byte alignment. When CONFIG_DEBUG_BUGVERBOSE=n, the layout of a bug_entry is: struct bug_entry { signed int bug_addr_disp; // 4 bytes unsigned short flags; // 2 bytes < implicit padding > // 2 bytes } ... with 8 bytes total, with 6 bytes of data and 2 bytes of trailing padding, requiring 4-byte alginment. When we create a bug_entry in assembly, we align the start of the entry to 4 bytes, which implicitly handles padding for any prior entries. However, we do not align the end of the entry, and so when CONFIG_DEBUG_BUGVERBOSE=n, the final entry lacks the trailing padding bytes. For the main kernel image this is not a problem as find_bug() doesn't depend on the trailing padding bytes when searching for entries: for (bug = __start___bug_table; bug < __stop___bug_table; ++bug) if (bugaddr == bug_addr(bug)) return bug; However for modules, module_bug_finalize() depends on the trailing bytes when calculating the number of entries: mod->num_bugs = sechdrs[i].sh_size / sizeof(struct bug_entry); ... and as the last bug_entry lacks the necessary padding bytes, this entry will not be counted, e.g. in the case of a single entry: sechdrs[i].sh_size == 6 sizeof(struct bug_entry) == 8; sechdrs[i].sh_size / sizeof(struct bug_entry) == 0; Consequently module_find_bug() will miss the last bug_entry when it does: for (i = 0; i < mod->num_bugs; ++i, ++bug) if (bugaddr == bug_addr(bug)) goto out; ... which can lead to a kenrel panic due to an unhandled bug. This can be demonstrated with the following module: static int __init buginit(void) { WARN(1, "hello\n"); return 0; } static void __exit bugexit(void) { } module_init(buginit); module_exit(bugexit); MODULE_LICENSE("GPL"); ... which will trigger a kernel panic when loaded: ------------[ cut here ]------------ hello Unexpected kernel BRK exception at EL1 Internal error: BRK handler: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: hello(O+) CPU: 0 PID: 50 Comm: insmod Tainted: G O 6.9.1 #8 Hardware name: linux,dummy-virt (DT) pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : buginit+0x18/0x1000 [hello] lr : buginit+0x18/0x1000 [hello] sp : ffff800080533ae0 x29: ffff800080533ae0 x28: 0000000000000000 x27: 0000000000000000 x26: ffffaba8c4e70510 x25: ffff800080533c30 x24: ffffaba8c4a28a58 x23: 0000000000000000 x22: 0000000000000000 x21: ffff3947c0eab3c0 x20: ffffaba8c4e3f000 x19: ffffaba846464000 x18: 0000000000000006 x17: 0000000000000000 x16: ffffaba8c2492834 x15: 0720072007200720 x14: 0720072007200720 x13: ffffaba8c49b27c8 x12: 0000000000000312 x11: 0000000000000106 x10: ffffaba8c4a0a7c8 x9 : ffffaba8c49b27c8 x8 : 00000000ffffefff x7 : ffffaba8c4a0a7c8 x6 : 80000000fffff000 x5 : 0000000000000107 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff3947c0eab3c0 Call trace: buginit+0x18/0x1000 [hello] do_one_initcall+0x80/0x1c8 do_init_module+0x60/0x218 load_module+0x1ba4/0x1d70 __do_sys_init_module+0x198/0x1d0 __arm64_sys_init_module+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc ---truncated---
CVE-2024-40925 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix request.queuelist usage in flush Friedrich Weber reported a kernel crash problem and bisected to commit 81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine"). The root cause is that we use "list_move_tail(&rq->queuelist, pending)" in the PREFLUSH/POSTFLUSH sequences. But rq->queuelist.next == xxx since it's popped out from plug->cached_rq in __blk_mq_alloc_requests_batch(). We don't initialize its queuelist just for this first request, although the queuelist of all later popped requests will be initialized. Fix it by changing to use "list_add_tail(&rq->queuelist, pending)" so rq->queuelist doesn't need to be initialized. It should be ok since rq can't be on any list when PREFLUSH or POSTFLUSH, has no move actually. Please note the commit 81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine") also has another requirement that no drivers would touch rq->queuelist after blk_mq_end_request() since we will reuse it to add rq to the post-flush pending list in POSTFLUSH. If this is not true, we will have to revert that commit IMHO. This updated version adds "list_del_init(&rq->queuelist)" in flush rq callback since the dm layer may submit request of a weird invalid format (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH), which causes double list_add if without this "list_del_init(&rq->queuelist)". The weird invalid format problem should be fixed in dm layer.
CVE-2024-26920 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing/trigger: Fix to return error if failed to alloc snapshot Fix register_snapshot_trigger() to return error code if it failed to allocate a snapshot instead of 0 (success). Unless that, it will register snapshot trigger without an error.
CVE-2024-26919 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: ulpi: Fix debugfs directory leak The ULPI per-device debugfs root is named after the ulpi device's parent, but ulpi_unregister_interface tries to remove a debugfs directory named after the ulpi device itself. This results in the directory sticking around and preventing subsequent (deferred) probes from succeeding. Change the directory name to match the ulpi device.
CVE-2024-26906 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault() When trying to use copy_from_kernel_nofault() to read vsyscall page through a bpf program, the following oops was reported: BUG: unable to handle page fault for address: ffffffffff600000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:copy_from_kernel_nofault+0x6f/0x110 ...... Call Trace: <TASK> ? copy_from_kernel_nofault+0x6f/0x110 bpf_probe_read_kernel+0x1d/0x50 bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d trace_call_bpf+0xc5/0x1c0 perf_call_bpf_enter.isra.0+0x69/0xb0 perf_syscall_enter+0x13e/0x200 syscall_trace_enter+0x188/0x1c0 do_syscall_64+0xb5/0xe0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> ...... ---[ end trace 0000000000000000 ]--- The oops is triggered when: 1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall page and invokes copy_from_kernel_nofault() which in turn calls __get_user_asm(). 2) Because the vsyscall page address is not readable from kernel space, a page fault exception is triggered accordingly. 3) handle_page_fault() considers the vsyscall page address as a user space address instead of a kernel space address. This results in the fix-up setup by bpf not being applied and a page_fault_oops() is invoked due to SMAP. Considering handle_page_fault() has already considered the vsyscall page address as a userspace address, fix the problem by disallowing vsyscall page read for copy_from_kernel_nofault().
CVE-2023-52522 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix possible store tearing in neigh_periodic_work() While looking at a related syzbot report involving neigh_periodic_work(), I found that I forgot to add an annotation when deleting an RCU protected item from a list. Readers use rcu_deference(*np), we need to use either rcu_assign_pointer() or WRITE_ONCE() on writer side to prevent store tearing. I use rcu_assign_pointer() to have lockdep support, this was the choice made in neigh_flush_dev().