Total
13062 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-35832 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: bcachefs: kvfree bch_fs::snapshots in bch2_fs_snapshots_exit bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut. It should be freed by kvfree not kfree. Or umount will triger: [ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008 [ 406.830676 ] #PF: supervisor read access in kernel mode [ 406.831643 ] #PF: error_code(0x0000) - not-present page [ 406.832487 ] PGD 0 P4D 0 [ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI [ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90 [ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 [ 406.835796 ] RIP: 0010:kfree+0x62/0x140 [ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6 [ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286 [ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4 [ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000 [ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001 [ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80 [ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000 [ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000 [ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0 [ 406.841464 ] Call Trace: [ 406.841583 ] <TASK> [ 406.841682 ] ? __die+0x1f/0x70 [ 406.841828 ] ? page_fault_oops+0x159/0x470 [ 406.842014 ] ? fixup_exception+0x22/0x310 [ 406.842198 ] ? exc_page_fault+0x1ed/0x200 [ 406.842382 ] ? asm_exc_page_fault+0x22/0x30 [ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs] [ 406.842842 ] ? kfree+0x62/0x140 [ 406.842988 ] ? kfree+0x104/0x140 [ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs] [ 406.843390 ] kobject_put+0xb7/0x170 [ 406.843552 ] deactivate_locked_super+0x2f/0xa0 [ 406.843756 ] cleanup_mnt+0xba/0x150 [ 406.843917 ] task_work_run+0x59/0xa0 [ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0 [ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40 [ 406.844510 ] do_syscall_64+0x4e/0xf0 [ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 406.844907 ] RIP: 0033:0x7f0a2664e4fb | ||||
CVE-2024-35814 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: swiotlb: Fix double-allocation of slots due to broken alignment handling Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"), which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment checks"), causes a functional regression with vsock in a virtual machine using bouncing via a restricted DMA SWIOTLB pool. When virtio allocates the virtqueues for the vsock device using dma_alloc_coherent(), the SWIOTLB search can return page-unaligned allocations if 'area->index' was left unaligned by a previous allocation from the buffer: # Final address in brackets is the SWIOTLB address returned to the caller | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800) | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800) | virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800) This ends badly (typically buffer corruption and/or a hang) because swiotlb_alloc() is expecting a page-aligned allocation and so blindly returns a pointer to the 'struct page' corresponding to the allocation, therefore double-allocating the first half (2KiB slot) of the 4KiB page. Fix the problem by treating the allocation alignment separately to any additional alignment requirements from the device, using the maximum of the two as the stride to search the buffer slots and taking care to ensure a minimum of page-alignment for buffers larger than a page. This also resolves swiotlb allocation failures occuring due to the inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and resulting in alignment requirements exceeding swiotlb_max_mapping_size(). | ||||
CVE-2024-26912 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix several DMA buffer leaks Nouveau manages GSP-RM DMA buffers with nvkm_gsp_mem objects. Several of these buffers are never dealloced. Some of them can be deallocated right after GSP-RM is initialized, but the rest need to stay until the driver unloads. Also futher bullet-proof these objects by poisoning the buffer and clearing the nvkm_gsp_mem object when it is deallocated. Poisoning the buffer should trigger an error (or crash) from GSP-RM if it tries to access the buffer after we've deallocated it, because we were wrong about when it is safe to deallocate. Finally, change the mem->size field to a size_t because that's the same type that dma_alloc_coherent expects. | ||||
CVE-2024-26885 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix DEVMAP_HASH overflow check on 32-bit arches The devmap code allocates a number hash buckets equal to the next power of two of the max_entries value provided when creating the map. When rounding up to the next power of two, the 32-bit variable storing the number of buckets can overflow, and the code checks for overflow by checking if the truncated 32-bit value is equal to 0. However, on 32-bit arches the rounding up itself can overflow mid-way through, because it ends up doing a left-shift of 32 bits on an unsigned long value. If the size of an unsigned long is four bytes, this is undefined behaviour, so there is no guarantee that we'll end up with a nice and tidy 0-value at the end. Syzbot managed to turn this into a crash on arm32 by creating a DEVMAP_HASH with max_entries > 0x80000000 and then trying to update it. Fix this by moving the overflow check to before the rounding up operation. | ||||
CVE-2024-26884 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix hashtab overflow check on 32-bit arches The hashtab code relies on roundup_pow_of_two() to compute the number of hash buckets, and contains an overflow check by checking if the resulting value is 0. However, on 32-bit arches, the roundup code itself can overflow by doing a 32-bit left-shift of an unsigned long value, which is undefined behaviour, so it is not guaranteed to truncate neatly. This was triggered by syzbot on the DEVMAP_HASH type, which contains the same check, copied from the hashtab code. So apply the same fix to hashtab, by moving the overflow check to before the roundup. | ||||
CVE-2024-26842 | 2025-05-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix shift issue in ufshcd_clear_cmd() When task_tag >= 32 (in MCQ mode) and sizeof(unsigned int) == 4, 1U << task_tag will out of bounds for a u32 mask. Fix this up to prevent SHIFT_ISSUE (bitwise shifts that are out of bounds for their data type). [name:debug_monitors&]Unexpected kernel BRK exception at EL1 [name:traps&]Internal error: BRK handler: 00000000f2005514 [#1] PREEMPT SMP [name:mediatek_cpufreq_hw&]cpufreq stop DVFS log done [name:mrdump&]Kernel Offset: 0x1ba5800000 from 0xffffffc008000000 [name:mrdump&]PHYS_OFFSET: 0x80000000 [name:mrdump&]pstate: 22400005 (nzCv daif +PAN -UAO) [name:mrdump&]pc : [0xffffffdbaf52bb2c] ufshcd_clear_cmd+0x280/0x288 [name:mrdump&]lr : [0xffffffdbaf52a774] ufshcd_wait_for_dev_cmd+0x3e4/0x82c [name:mrdump&]sp : ffffffc0081471b0 <snip> Workqueue: ufs_eh_wq_0 ufshcd_err_handler Call trace: dump_backtrace+0xf8/0x144 show_stack+0x18/0x24 dump_stack_lvl+0x78/0x9c dump_stack+0x18/0x44 mrdump_common_die+0x254/0x480 [mrdump] ipanic_die+0x20/0x30 [mrdump] notify_die+0x15c/0x204 die+0x10c/0x5f8 arm64_notify_die+0x74/0x13c do_debug_exception+0x164/0x26c el1_dbg+0x64/0x80 el1h_64_sync_handler+0x3c/0x90 el1h_64_sync+0x68/0x6c ufshcd_clear_cmd+0x280/0x288 ufshcd_wait_for_dev_cmd+0x3e4/0x82c ufshcd_exec_dev_cmd+0x5bc/0x9ac ufshcd_verify_dev_init+0x84/0x1c8 ufshcd_probe_hba+0x724/0x1ce0 ufshcd_host_reset_and_restore+0x260/0x574 ufshcd_reset_and_restore+0x138/0xbd0 ufshcd_err_handler+0x1218/0x2f28 process_one_work+0x5fc/0x1140 worker_thread+0x7d8/0xe20 kthread+0x25c/0x468 ret_from_fork+0x10/0x20 | ||||
CVE-2024-26659 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: xhci: handle isoc Babble and Buffer Overrun events properly xHCI 4.9 explicitly forbids assuming that the xHC has released its ownership of a multi-TRB TD when it reports an error on one of the early TRBs. Yet the driver makes such assumption and releases the TD, allowing the remaining TRBs to be freed or overwritten by new TDs. The xHC should also report completion of the final TRB due to its IOC flag being set by us, regardless of prior errors. This event cannot be recognized if the TD has already been freed earlier, resulting in "Transfer event TRB DMA ptr not part of current TD" error message. Fix this by reusing the logic for processing isoc Transaction Errors. This also handles hosts which fail to report the final completion. Fix transfer length reporting on Babble errors. They may be caused by device malfunction, no guarantee that the buffer has been filled. | ||||
CVE-2024-26599 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: pwm: Fix out-of-bounds access in of_pwm_single_xlate() With args->args_count == 2 args->args[2] is not defined. Actually the flags are contained in args->args[1]. | ||||
CVE-2024-26589 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off for validation. However, variable offset ptr alu is not prohibited for this ptr kind. So the variable offset is not checked. The following prog is accepted: func#0 @0 0: R1=ctx() R10=fp0 0: (bf) r6 = r1 ; R1=ctx() R6_w=ctx() 1: (79) r7 = *(u64 *)(r6 +144) ; R6_w=ctx() R7_w=flow_keys() 2: (b7) r8 = 1024 ; R8_w=1024 3: (37) r8 /= 1 ; R8_w=scalar() 4: (57) r8 &= 1024 ; R8_w=scalar(smin=smin32=0, smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400)) 5: (0f) r7 += r8 mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1 mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024 mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1 mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024 6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off =(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024, var_off=(0x0; 0x400)) 6: (79) r0 = *(u64 *)(r7 +0) ; R0_w=scalar() 7: (95) exit This prog loads flow_keys to r7, and adds the variable offset r8 to r7, and finally causes out-of-bounds access: BUG: unable to handle page fault for address: ffffc90014c80038 [...] Call Trace: <TASK> bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline] __bpf_prog_run include/linux/filter.h:651 [inline] bpf_prog_run include/linux/filter.h:658 [inline] bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline] bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991 bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359 bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline] __sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475 __do_sys_bpf kernel/bpf/syscall.c:5561 [inline] __se_sys_bpf kernel/bpf/syscall.c:5559 [inline] __x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Fix this by rejecting ptr alu with variable offset on flow_keys. Applying the patch rejects the program with "R7 pointer arithmetic on flow_keys prohibited". | ||||
CVE-2024-26588 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: LoongArch: BPF: Prevent out-of-bounds memory access The test_tag test triggers an unhandled page fault: # ./test_tag [ 130.640218] CPU 0 Unable to handle kernel paging request at virtual address ffff80001b898004, era == 9000000003137f7c, ra == 9000000003139e70 [ 130.640501] Oops[#3]: [ 130.640553] CPU: 0 PID: 1326 Comm: test_tag Tainted: G D O 6.7.0-rc4-loong-devel-gb62ab1a397cf #47 61985c1d94084daa2432f771daa45b56b10d8d2a [ 130.640764] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 [ 130.640874] pc 9000000003137f7c ra 9000000003139e70 tp 9000000104cb4000 sp 9000000104cb7a40 [ 130.641001] a0 ffff80001b894000 a1 ffff80001b897ff8 a2 000000006ba210be a3 0000000000000000 [ 130.641128] a4 000000006ba210be a5 00000000000000f1 a6 00000000000000b3 a7 0000000000000000 [ 130.641256] t0 0000000000000000 t1 00000000000007f6 t2 0000000000000000 t3 9000000004091b70 [ 130.641387] t4 000000006ba210be t5 0000000000000004 t6 fffffffffffffff0 t7 90000000040913e0 [ 130.641512] t8 0000000000000005 u0 0000000000000dc0 s9 0000000000000009 s0 9000000104cb7ae0 [ 130.641641] s1 00000000000007f6 s2 0000000000000009 s3 0000000000000095 s4 0000000000000000 [ 130.641771] s5 ffff80001b894000 s6 ffff80001b897fb0 s7 9000000004090c50 s8 0000000000000000 [ 130.641900] ra: 9000000003139e70 build_body+0x1fcc/0x4988 [ 130.642007] ERA: 9000000003137f7c build_body+0xd8/0x4988 [ 130.642112] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 130.642261] PRMD: 00000004 (PPLV0 +PIE -PWE) [ 130.642353] EUEN: 00000003 (+FPE +SXE -ASXE -BTE) [ 130.642458] ECFG: 00071c1c (LIE=2-4,10-12 VS=7) [ 130.642554] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 130.642658] BADV: ffff80001b898004 [ 130.642719] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 130.642815] Modules linked in: [last unloaded: bpf_testmod(O)] [ 130.642924] Process test_tag (pid: 1326, threadinfo=00000000f7f4015f, task=000000006499f9fd) [ 130.643062] Stack : 0000000000000000 9000000003380724 0000000000000000 0000000104cb7be8 [ 130.643213] 0000000000000000 25af8d9b6e600558 9000000106250ea0 9000000104cb7ae0 [ 130.643378] 0000000000000000 0000000000000000 9000000104cb7be8 90000000049f6000 [ 130.643538] 0000000000000090 9000000106250ea0 ffff80001b894000 ffff80001b894000 [ 130.643685] 00007ffffb917790 900000000313ca94 0000000000000000 0000000000000000 [ 130.643831] ffff80001b894000 0000000000000ff7 0000000000000000 9000000100468000 [ 130.643983] 0000000000000000 0000000000000000 0000000000000040 25af8d9b6e600558 [ 130.644131] 0000000000000bb7 ffff80001b894048 0000000000000000 0000000000000000 [ 130.644276] 9000000104cb7be8 90000000049f6000 0000000000000090 9000000104cb7bdc [ 130.644423] ffff80001b894000 0000000000000000 00007ffffb917790 90000000032acfb0 [ 130.644572] ... [ 130.644629] Call Trace: [ 130.644641] [<9000000003137f7c>] build_body+0xd8/0x4988 [ 130.644785] [<900000000313ca94>] bpf_int_jit_compile+0x228/0x4ec [ 130.644891] [<90000000032acfb0>] bpf_prog_select_runtime+0x158/0x1b0 [ 130.645003] [<90000000032b3504>] bpf_prog_load+0x760/0xb44 [ 130.645089] [<90000000032b6744>] __sys_bpf+0xbb8/0x2588 [ 130.645175] [<90000000032b8388>] sys_bpf+0x20/0x2c [ 130.645259] [<9000000003f6ab38>] do_syscall+0x7c/0x94 [ 130.645369] [<9000000003121c5c>] handle_syscall+0xbc/0x158 [ 130.645507] [ 130.645539] Code: 380839f6 380831f9 28412bae <24000ca6> 004081ad 0014cb50 004083e8 02bff34c 58008e91 [ 130.645729] [ 130.646418] ---[ end trace 0000000000000000 ]--- On my machine, which has CONFIG_PAGE_SIZE_16KB=y, the test failed at loading a BPF prog with 2039 instructions: prog = (struct bpf_prog *)ffff80001b894000 insn = (struct bpf_insn *)(prog->insnsi)fff ---truncated--- | ||||
CVE-2022-48946 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: udf: Fix preallocation discarding at indirect extent boundary When preallocation extent is the first one in the extent block, the code would corrupt extent tree header instead. Fix the problem and use udf_delete_aext() for deleting extent to avoid some code duplication. | ||||
CVE-2022-48940 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix crash due to incorrect copy_map_value When both bpf_spin_lock and bpf_timer are present in a BPF map value, copy_map_value needs to skirt both objects when copying a value into and out of the map. However, the current code does not set both s_off and t_off in copy_map_value, which leads to a crash when e.g. bpf_spin_lock is placed in map value with bpf_timer, as bpf_map_update_elem call will be able to overwrite the other timer object. When the issue is not fixed, an overwriting can produce the following splat: [root@(none) bpf]# ./test_progs -t timer_crash [ 15.930339] bpf_testmod: loading out-of-tree module taints kernel. [ 16.037849] ================================================================== [ 16.038458] BUG: KASAN: user-memory-access in __pv_queued_spin_lock_slowpath+0x32b/0x520 [ 16.038944] Write of size 8 at addr 0000000000043ec0 by task test_progs/325 [ 16.039399] [ 16.039514] CPU: 0 PID: 325 Comm: test_progs Tainted: G OE 5.16.0+ #278 [ 16.039983] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.15.0-1 04/01/2014 [ 16.040485] Call Trace: [ 16.040645] <TASK> [ 16.040805] dump_stack_lvl+0x59/0x73 [ 16.041069] ? __pv_queued_spin_lock_slowpath+0x32b/0x520 [ 16.041427] kasan_report.cold+0x116/0x11b [ 16.041673] ? __pv_queued_spin_lock_slowpath+0x32b/0x520 [ 16.042040] __pv_queued_spin_lock_slowpath+0x32b/0x520 [ 16.042328] ? memcpy+0x39/0x60 [ 16.042552] ? pv_hash+0xd0/0xd0 [ 16.042785] ? lockdep_hardirqs_off+0x95/0xd0 [ 16.043079] __bpf_spin_lock_irqsave+0xdf/0xf0 [ 16.043366] ? bpf_get_current_comm+0x50/0x50 [ 16.043608] ? jhash+0x11a/0x270 [ 16.043848] bpf_timer_cancel+0x34/0xe0 [ 16.044119] bpf_prog_c4ea1c0f7449940d_sys_enter+0x7c/0x81 [ 16.044500] bpf_trampoline_6442477838_0+0x36/0x1000 [ 16.044836] __x64_sys_nanosleep+0x5/0x140 [ 16.045119] do_syscall_64+0x59/0x80 [ 16.045377] ? lock_is_held_type+0xe4/0x140 [ 16.045670] ? irqentry_exit_to_user_mode+0xa/0x40 [ 16.046001] ? mark_held_locks+0x24/0x90 [ 16.046287] ? asm_exc_page_fault+0x1e/0x30 [ 16.046569] ? asm_exc_page_fault+0x8/0x30 [ 16.046851] ? lockdep_hardirqs_on+0x7e/0x100 [ 16.047137] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 16.047405] RIP: 0033:0x7f9e4831718d [ 16.047602] Code: b4 0c 00 0f 05 eb a9 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d b3 6c 0c 00 f7 d8 64 89 01 48 [ 16.048764] RSP: 002b:00007fff488086b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000023 [ 16.049275] RAX: ffffffffffffffda RBX: 00007f9e48683740 RCX: 00007f9e4831718d [ 16.049747] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00007fff488086d0 [ 16.050225] RBP: 00007fff488086f0 R08: 00007fff488085d7 R09: 00007f9e4cb594a0 [ 16.050648] R10: 0000000000000000 R11: 0000000000000206 R12: 00007f9e484cde30 [ 16.051124] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 16.051608] </TASK> [ 16.051762] ================================================================== | ||||
CVE-2022-48732 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix off by one in BIOS boundary checking Bounds checking when parsing init scripts embedded in the BIOS reject access to the last byte. This causes driver initialization to fail on Apple eMac's with GeForce 2 MX GPUs, leaving the system with no working console. This is probably only seen on OpenFirmware machines like PowerPC Macs because the BIOS image provided by OF is only the used parts of the ROM, not a power-of-two blocks read from PCI directly so PCs always have empty bytes at the end that are never accessed. | ||||
CVE-2022-48662 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gem: Really move i915_gem_context.link under ref protection i915_perf assumes that it can use the i915_gem_context reference to protect its i915->gem.contexts.list iteration. However, this requires that we do not remove the context from the list until after we drop the final reference and release the struct. If, as currently, we remove the context from the list during context_close(), the link.next pointer may be poisoned while we are holding the context reference and cause a GPF: [ 4070.573157] i915 0000:00:02.0: [drm:i915_perf_open_ioctl [i915]] filtering on ctx_id=0x1fffff ctx_id_mask=0x1fffff [ 4070.574881] general protection fault, probably for non-canonical address 0xdead000000000100: 0000 [#1] PREEMPT SMP [ 4070.574897] CPU: 1 PID: 284392 Comm: amd_performance Tainted: G E 5.17.9 #180 [ 4070.574903] Hardware name: Intel Corporation NUC7i5BNK/NUC7i5BNB, BIOS BNKBL357.86A.0052.2017.0918.1346 09/18/2017 [ 4070.574907] RIP: 0010:oa_configure_all_contexts.isra.0+0x222/0x350 [i915] [ 4070.574982] Code: 08 e8 32 6e 10 e1 4d 8b 6d 50 b8 ff ff ff ff 49 83 ed 50 f0 41 0f c1 04 24 83 f8 01 0f 84 e3 00 00 00 85 c0 0f 8e fa 00 00 00 <49> 8b 45 50 48 8d 70 b0 49 8d 45 50 48 39 44 24 10 0f 85 34 fe ff [ 4070.574990] RSP: 0018:ffffc90002077b78 EFLAGS: 00010202 [ 4070.574995] RAX: 0000000000000002 RBX: 0000000000000002 RCX: 0000000000000000 [ 4070.575000] RDX: 0000000000000001 RSI: ffffc90002077b20 RDI: ffff88810ddc7c68 [ 4070.575004] RBP: 0000000000000001 R08: ffff888103242648 R09: fffffffffffffffc [ 4070.575008] R10: ffffffff82c50bc0 R11: 0000000000025c80 R12: ffff888101bf1860 [ 4070.575012] R13: dead0000000000b0 R14: ffffc90002077c04 R15: ffff88810be5cabc [ 4070.575016] FS: 00007f1ed50c0780(0000) GS:ffff88885ec80000(0000) knlGS:0000000000000000 [ 4070.575021] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4070.575025] CR2: 00007f1ed5590280 CR3: 000000010ef6f005 CR4: 00000000003706e0 [ 4070.575029] Call Trace: [ 4070.575033] <TASK> [ 4070.575037] lrc_configure_all_contexts+0x13e/0x150 [i915] [ 4070.575103] gen8_enable_metric_set+0x4d/0x90 [i915] [ 4070.575164] i915_perf_open_ioctl+0xbc0/0x1500 [i915] [ 4070.575224] ? asm_common_interrupt+0x1e/0x40 [ 4070.575232] ? i915_oa_init_reg_state+0x110/0x110 [i915] [ 4070.575290] drm_ioctl_kernel+0x85/0x110 [ 4070.575296] ? update_load_avg+0x5f/0x5e0 [ 4070.575302] drm_ioctl+0x1d3/0x370 [ 4070.575307] ? i915_oa_init_reg_state+0x110/0x110 [i915] [ 4070.575382] ? gen8_gt_irq_handler+0x46/0x130 [i915] [ 4070.575445] __x64_sys_ioctl+0x3c4/0x8d0 [ 4070.575451] ? __do_softirq+0xaa/0x1d2 [ 4070.575456] do_syscall_64+0x35/0x80 [ 4070.575461] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 4070.575467] RIP: 0033:0x7f1ed5c10397 [ 4070.575471] Code: 3c 1c e8 1c ff ff ff 85 c0 79 87 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d a9 da 0d 00 f7 d8 64 89 01 48 [ 4070.575478] RSP: 002b:00007ffd65c8d7a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [ 4070.575484] RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 00007f1ed5c10397 [ 4070.575488] RDX: 00007ffd65c8d7c0 RSI: 0000000040106476 RDI: 0000000000000006 [ 4070.575492] RBP: 00005620972f9c60 R08: 000000000000000a R09: 0000000000000005 [ 4070.575496] R10: 000000000000000d R11: 0000000000000246 R12: 000000000000000a [ 4070.575500] R13: 000000000000000d R14: 0000000000000000 R15: 00007ffd65c8d7c0 [ 4070.575505] </TASK> [ 4070.575507] Modules linked in: nls_ascii(E) nls_cp437(E) vfat(E) fat(E) i915(E) x86_pkg_temp_thermal(E) intel_powerclamp(E) crct10dif_pclmul(E) crc32_pclmul(E) crc32c_intel(E) aesni_intel(E) crypto_simd(E) intel_gtt(E) cryptd(E) ttm(E) rapl(E) intel_cstate(E) drm_kms_helper(E) cfbfillrect(E) syscopyarea(E) cfbimgblt(E) intel_uncore(E) sysfillrect(E) mei_me(E) sysimgblt(E) i2c_i801(E) fb_sys_fops(E) mei(E) intel_pch_thermal(E) i2c_smbus ---truncated--- | ||||
CVE-2022-48655 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-05-04 | 8.1 High |
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Harden accesses to the reset domains Accessing reset domains descriptors by the index upon the SCMI drivers requests through the SCMI reset operations interface can potentially lead to out-of-bound violations if the SCMI driver misbehave. Add an internal consistency check before any such domains descriptors accesses. | ||||
CVE-2022-48651 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.7 High |
In the Linux kernel, the following vulnerability has been resolved: ipvlan: Fix out-of-bound bugs caused by unset skb->mac_header If an AF_PACKET socket is used to send packets through ipvlan and the default xmit function of the AF_PACKET socket is changed from dev_queue_xmit() to packet_direct_xmit() via setsockopt() with the option name of PACKET_QDISC_BYPASS, the skb->mac_header may not be reset and remains as the initial value of 65535, this may trigger slab-out-of-bounds bugs as following: ================================================================= UG: KASAN: slab-out-of-bounds in ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan] PU: 2 PID: 1768 Comm: raw_send Kdump: loaded Not tainted 6.0.0-rc4+ #6 ardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 all Trace: print_address_description.constprop.0+0x1d/0x160 print_report.cold+0x4f/0x112 kasan_report+0xa3/0x130 ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan] ipvlan_start_xmit+0x29/0xa0 [ipvlan] __dev_direct_xmit+0x2e2/0x380 packet_direct_xmit+0x22/0x60 packet_snd+0x7c9/0xc40 sock_sendmsg+0x9a/0xa0 __sys_sendto+0x18a/0x230 __x64_sys_sendto+0x74/0x90 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The root cause is: 1. packet_snd() only reset skb->mac_header when sock->type is SOCK_RAW and skb->protocol is not specified as in packet_parse_headers() 2. packet_direct_xmit() doesn't reset skb->mac_header as dev_queue_xmit() In this case, skb->mac_header is 65535 when ipvlan_xmit_mode_l2() is called. So when ipvlan_xmit_mode_l2() gets mac header with eth_hdr() which use "skb->head + skb->mac_header", out-of-bound access occurs. This patch replaces eth_hdr() with skb_eth_hdr() in ipvlan_xmit_mode_l2() and reset mac header in multicast to solve this out-of-bound bug. | ||||
CVE-2023-52867 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: possible buffer overflow Buffer 'afmt_status' of size 6 could overflow, since index 'afmt_idx' is checked after access. | ||||
CVE-2023-52731 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: fbdev: Fix invalid page access after closing deferred I/O devices When a fbdev with deferred I/O is once opened and closed, the dirty pages still remain queued in the pageref list, and eventually later those may be processed in the delayed work. This may lead to a corruption of pages, hitting an Oops. This patch makes sure to cancel the delayed work and clean up the pageref list at closing the device for addressing the bug. A part of the cleanup code is factored out as a new helper function that is called from the common fb_release(). | ||||
CVE-2023-52464 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: EDAC/thunderx: Fix possible out-of-bounds string access Enabling -Wstringop-overflow globally exposes a warning for a common bug in the usage of strncat(): drivers/edac/thunderx_edac.c: In function 'thunderx_ocx_com_threaded_isr': drivers/edac/thunderx_edac.c:1136:17: error: 'strncat' specified bound 1024 equals destination size [-Werror=stringop-overflow=] 1136 | strncat(msg, other, OCX_MESSAGE_SIZE); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... 1145 | strncat(msg, other, OCX_MESSAGE_SIZE); ... 1150 | strncat(msg, other, OCX_MESSAGE_SIZE); ... Apparently the author of this driver expected strncat() to behave the way that strlcat() does, which uses the size of the destination buffer as its third argument rather than the length of the source buffer. The result is that there is no check on the size of the allocated buffer. Change it to strlcat(). [ bp: Trim compiler output, fixup commit message. ] | ||||
CVE-2023-52444 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid dirent corruption As Al reported in link[1]: f2fs_rename() ... if (old_dir != new_dir && !whiteout) f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); else f2fs_put_page(old_dir_page, 0); You want correct inumber in the ".." link. And cross-directory rename does move the source to new parent, even if you'd been asked to leave a whiteout in the old place. [1] https://lore.kernel.org/all/20231017055040.GN800259@ZenIV/ With below testcase, it may cause dirent corruption, due to it missed to call f2fs_set_link() to update ".." link to new directory. - mkdir -p dir/foo - renameat2 -w dir/foo bar [ASSERT] (__chk_dots_dentries:1421) --> Bad inode number[0x4] for '..', parent parent ino is [0x3] [FSCK] other corrupted bugs [Fail] |