Total
4984 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-39902 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2026-01-16 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/slub: avoid accessing metadata when pointer is invalid in object_err() object_err() reports details of an object for further debugging, such as the freelist pointer, redzone, etc. However, if the pointer is invalid, attempting to access object metadata can lead to a crash since it does not point to a valid object. One known path to the crash is when alloc_consistency_checks() determines the pointer to the allocated object is invalid because of a freelist corruption, and calls object_err() to report it. The debug code should report and handle the corruption gracefully and not crash in the process. In case the pointer is NULL or check_valid_pointer() returns false for the pointer, only print the pointer value and skip accessing metadata. | ||||
| CVE-2022-50459 | 1 Linux | 1 Linux Kernel | 2026-01-16 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: iscsi: iscsi_tcp: Fix null-ptr-deref while calling getpeername() Fix a NULL pointer crash that occurs when we are freeing the socket at the same time we access it via sysfs. The problem is that: 1. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() take the frwd_lock and do sock_hold() then drop the frwd_lock. sock_hold() does a get on the "struct sock". 2. iscsi_sw_tcp_release_conn() does sockfd_put() which does the last put on the "struct socket" and that does __sock_release() which sets the sock->ops to NULL. 3. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() then call kernel_getpeername() which accesses the NULL sock->ops. Above we do a get on the "struct sock", but we needed a get on the "struct socket". Originally, we just held the frwd_lock the entire time but in commit bcf3a2953d36 ("scsi: iscsi: iscsi_tcp: Avoid holding spinlock while calling getpeername()") we switched to refcount based because the network layer changed and started taking a mutex in that path, so we could no longer hold the frwd_lock. Instead of trying to maintain multiple refcounts, this just has us use a mutex for accessing the socket in the interface code paths. | ||||
| CVE-2022-50453 | 1 Linux | 1 Linux Kernel | 2026-01-16 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check. | ||||
| CVE-2022-50452 | 1 Linux | 1 Linux Kernel | 2026-01-16 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: sched: cake: fix null pointer access issue when cake_init() fails When the default qdisc is cake, if the qdisc of dev_queue fails to be inited during mqprio_init(), cake_reset() is invoked to clear resources. In this case, the tins is NULL, and it will cause gpf issue. The process is as follows: qdisc_create_dflt() cake_init() q->tins = kvcalloc(...) --->failed, q->tins is NULL ... qdisc_put() ... cake_reset() ... cake_dequeue_one() b = &q->tins[...] --->q->tins is NULL The following is the Call Trace information: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:cake_dequeue_one+0xc9/0x3c0 Call Trace: <TASK> cake_reset+0xb1/0x140 qdisc_reset+0xed/0x6f0 qdisc_destroy+0x82/0x4c0 qdisc_put+0x9e/0xb0 qdisc_create_dflt+0x2c3/0x4a0 mqprio_init+0xa71/0x1760 qdisc_create+0x3eb/0x1000 tc_modify_qdisc+0x408/0x1720 rtnetlink_rcv_msg+0x38e/0xac0 netlink_rcv_skb+0x12d/0x3a0 netlink_unicast+0x4a2/0x740 netlink_sendmsg+0x826/0xcc0 sock_sendmsg+0xc5/0x100 ____sys_sendmsg+0x583/0x690 ___sys_sendmsg+0xe8/0x160 __sys_sendmsg+0xbf/0x160 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f89e5122d04 </TASK> | ||||
| CVE-2022-50467 | 1 Linux | 1 Linux Kernel | 2026-01-16 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix null ndlp ptr dereference in abnormal exit path for GFT_ID An error case exit from lpfc_cmpl_ct_cmd_gft_id() results in a call to lpfc_nlp_put() with a null pointer to a nodelist structure. Changed lpfc_cmpl_ct_cmd_gft_id() to initialize nodelist pointer upon entry. | ||||
| CVE-2025-60007 | 1 Juniper Networks | 1 Junos Os | 2026-01-16 | 5.5 Medium |
| A NULL Pointer Dereference vulnerability in the chassis daemon (chassisd) of Juniper Networks Junos OS on MX, SRX and EX Series allows a local attacker with low privileges to cause a Denial-of-Service (DoS). When a user executes the 'show chassis' command with specifically crafted options, chassisd will crash and restart. Due to this all components but the Routing Engine (RE) in the chassis are reinitialized, which leads to a complete service outage, which the system automatically recovers from. This issue affects: Junos OS on MX, SRX and EX Series: * all versions before 22.4R3-S8, * 23.2 versions before 23.2R2-S5, * 23.4 versions before 23.4R2-S6, * 24.2 versions before 24.2R2-S2, * 24.4 versions before 24.4R2. | ||||
| CVE-2026-20875 | 1 Microsoft | 23 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 20 more | 2026-01-15 | 7.5 High |
| Null pointer dereference in Windows Local Security Authority Subsystem Service (LSASS) allows an unauthorized attacker to deny service over a network. | ||||
| CVE-2025-69259 | 2 Microsoft, Trendmicro | 3 Windows, Apex Central, Apexcentral | 2026-01-15 | 7.5 High |
| A message unchecked NULL return value vulnerability in Trend Micro Apex Central could allow a remote attacker to create a denial-of-service condition on affected installations. Please note: authentication is not required in order to exploit this vulnerability.. | ||||
| CVE-2025-39906 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: remove oem i2c adapter on finish Fixes a bug where unbinding of the GPU would leave the oem i2c adapter registered resulting in a null pointer dereference when applications try to access the invalid device. (cherry picked from commit 89923fb7ead4fdd37b78dd49962d9bb5892403e6) | ||||
| CVE-2025-39903 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: of_numa: fix uninitialized memory nodes causing kernel panic When there are memory-only nodes (nodes without CPUs), these nodes are not properly initialized, causing kernel panic during boot. of_numa_init of_numa_parse_cpu_nodes node_set(nid, numa_nodes_parsed); of_numa_parse_memory_nodes In of_numa_parse_cpu_nodes, numa_nodes_parsed gets updated only for nodes containing CPUs. Memory-only nodes should have been updated in of_numa_parse_memory_nodes, but they weren't. Subsequently, when free_area_init() attempts to access NODE_DATA() for these uninitialized memory nodes, the kernel panics due to NULL pointer dereference. This can be reproduced on ARM64 QEMU with 1 CPU and 2 memory nodes: qemu-system-aarch64 \ -cpu host -nographic \ -m 4G -smp 1 \ -machine virt,accel=kvm,gic-version=3,iommu=smmuv3 \ -object memory-backend-ram,size=2G,id=mem0 \ -object memory-backend-ram,size=2G,id=mem1 \ -numa node,nodeid=0,memdev=mem0 \ -numa node,nodeid=1,memdev=mem1 \ -kernel $IMAGE \ -hda $DISK \ -append "console=ttyAMA0 root=/dev/vda rw earlycon" [ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x481fd010] [ 0.000000] Linux version 6.17.0-rc1-00001-gabb4b3daf18c-dirty (yintirui@local) (gcc (GCC) 12.3.1, GNU ld (GNU Binutils) 2.41) #52 SMP PREEMPT Mon Aug 18 09:49:40 CST 2025 [ 0.000000] KASLR enabled [ 0.000000] random: crng init done [ 0.000000] Machine model: linux,dummy-virt [ 0.000000] efi: UEFI not found. [ 0.000000] earlycon: pl11 at MMIO 0x0000000009000000 (options '') [ 0.000000] printk: legacy bootconsole [pl11] enabled [ 0.000000] OF: reserved mem: Reserved memory: No reserved-memory node in the DT [ 0.000000] NODE_DATA(0) allocated [mem 0xbfffd9c0-0xbfffffff] [ 0.000000] node 1 must be removed before remove section 23 [ 0.000000] Zone ranges: [ 0.000000] DMA [mem 0x0000000040000000-0x00000000ffffffff] [ 0.000000] DMA32 empty [ 0.000000] Normal [mem 0x0000000100000000-0x000000013fffffff] [ 0.000000] Movable zone start for each node [ 0.000000] Early memory node ranges [ 0.000000] node 0: [mem 0x0000000040000000-0x00000000bfffffff] [ 0.000000] node 1: [mem 0x00000000c0000000-0x000000013fffffff] [ 0.000000] Initmem setup node 0 [mem 0x0000000040000000-0x00000000bfffffff] [ 0.000000] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0 [ 0.000000] Mem abort info: [ 0.000000] ESR = 0x0000000096000004 [ 0.000000] EC = 0x25: DABT (current EL), IL = 32 bits [ 0.000000] SET = 0, FnV = 0 [ 0.000000] EA = 0, S1PTW = 0 [ 0.000000] FSC = 0x04: level 0 translation fault [ 0.000000] Data abort info: [ 0.000000] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 0.000000] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 0.000000] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 0.000000] [00000000000000a0] user address but active_mm is swapper [ 0.000000] Internal error: Oops: 0000000096000004 [#1] SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 UID: 0 PID: 0 Comm: swapper Not tainted 6.17.0-rc1-00001-g760c6dabf762-dirty #54 PREEMPT [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : free_area_init+0x50c/0xf9c [ 0.000000] lr : free_area_init+0x5c0/0xf9c [ 0.000000] sp : ffffa02ca0f33c00 [ 0.000000] x29: ffffa02ca0f33cb0 x28: 0000000000000000 x27: 0000000000000000 [ 0.000000] x26: 4ec4ec4ec4ec4ec5 x25: 00000000000c0000 x24: 00000000000c0000 [ 0.000000] x23: 0000000000040000 x22: 0000000000000000 x21: ffffa02ca0f3b368 [ 0.000000] x20: ffffa02ca14c7b98 x19: 0000000000000000 x18: 0000000000000002 [ 0.000000] x17: 000000000000cacc x16: 0000000000000001 x15: 0000000000000001 [ 0.000000] x14: 0000000080000000 x13: 0000000000000018 x12: 0000000000000002 [ 0.0 ---truncated--- | ||||
| CVE-2025-39897 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: xilinx: axienet: Add error handling for RX metadata pointer retrieval Add proper error checking for dmaengine_desc_get_metadata_ptr() which can return an error pointer and lead to potential crashes or undefined behaviour if the pointer retrieval fails. Properly handle the error by unmapping DMA buffer, freeing the skb and returning early to prevent further processing with invalid data. | ||||
| CVE-2025-39895 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: sched: Fix sched_numa_find_nth_cpu() if mask offline sched_numa_find_nth_cpu() uses a bsearch to look for the 'closest' CPU in sched_domains_numa_masks and given cpus mask. However they might not intersect if all CPUs in the cpus mask are offline. bsearch will return NULL in that case, bail out instead of dereferencing a bogus pointer. The previous behaviour lead to this bug when using maxcpus=4 on an rk3399 (LLLLbb) (i.e. booting with all big CPUs offline): [ 1.422922] Unable to handle kernel paging request at virtual address ffffff8000000000 [ 1.423635] Mem abort info: [ 1.423889] ESR = 0x0000000096000006 [ 1.424227] EC = 0x25: DABT (current EL), IL = 32 bits [ 1.424715] SET = 0, FnV = 0 [ 1.424995] EA = 0, S1PTW = 0 [ 1.425279] FSC = 0x06: level 2 translation fault [ 1.425735] Data abort info: [ 1.425998] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000 [ 1.426499] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 1.426952] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 1.427428] swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000004a9f000 [ 1.428038] [ffffff8000000000] pgd=18000000f7fff403, p4d=18000000f7fff403, pud=18000000f7fff403, pmd=0000000000000000 [ 1.429014] Internal error: Oops: 0000000096000006 [#1] SMP [ 1.429525] Modules linked in: [ 1.429813] CPU: 3 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc4-dirty #343 PREEMPT [ 1.430559] Hardware name: Pine64 RockPro64 v2.1 (DT) [ 1.431012] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1.431634] pc : sched_numa_find_nth_cpu+0x2a0/0x488 [ 1.432094] lr : sched_numa_find_nth_cpu+0x284/0x488 [ 1.432543] sp : ffffffc084e1b960 [ 1.432843] x29: ffffffc084e1b960 x28: ffffff80078a8800 x27: ffffffc0846eb1d0 [ 1.433495] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 [ 1.434144] x23: 0000000000000000 x22: fffffffffff7f093 x21: ffffffc081de6378 [ 1.434792] x20: 0000000000000000 x19: 0000000ffff7f093 x18: 00000000ffffffff [ 1.435441] x17: 3030303866666666 x16: 66663d736b73616d x15: ffffffc104e1b5b7 [ 1.436091] x14: 0000000000000000 x13: ffffffc084712860 x12: 0000000000000372 [ 1.436739] x11: 0000000000000126 x10: ffffffc08476a860 x9 : ffffffc084712860 [ 1.437389] x8 : 00000000ffffefff x7 : ffffffc08476a860 x6 : 0000000000000000 [ 1.438036] x5 : 000000000000bff4 x4 : 0000000000000000 x3 : 0000000000000000 [ 1.438683] x2 : 0000000000000000 x1 : ffffffc0846eb000 x0 : ffffff8000407b68 [ 1.439332] Call trace: [ 1.439559] sched_numa_find_nth_cpu+0x2a0/0x488 (P) [ 1.440016] smp_call_function_any+0xc8/0xd0 [ 1.440416] armv8_pmu_init+0x58/0x27c [ 1.440770] armv8_cortex_a72_pmu_init+0x20/0x2c [ 1.441199] arm_pmu_device_probe+0x1e4/0x5e8 [ 1.441603] armv8_pmu_device_probe+0x1c/0x28 [ 1.442007] platform_probe+0x5c/0xac [ 1.442347] really_probe+0xbc/0x298 [ 1.442683] __driver_probe_device+0x78/0x12c [ 1.443087] driver_probe_device+0xdc/0x160 [ 1.443475] __driver_attach+0x94/0x19c [ 1.443833] bus_for_each_dev+0x74/0xd4 [ 1.444190] driver_attach+0x24/0x30 [ 1.444525] bus_add_driver+0xe4/0x208 [ 1.444874] driver_register+0x60/0x128 [ 1.445233] __platform_driver_register+0x24/0x30 [ 1.445662] armv8_pmu_driver_init+0x28/0x4c [ 1.446059] do_one_initcall+0x44/0x25c [ 1.446416] kernel_init_freeable+0x1dc/0x3bc [ 1.446820] kernel_init+0x20/0x1d8 [ 1.447151] ret_from_fork+0x10/0x20 [ 1.447493] Code: 90022e21 f000e5f5 910de2b5 2a1703e2 (f8767803) [ 1.448040] ---[ end trace 0000000000000000 ]--- [ 1.448483] note: swapper/0[1] exited with preempt_count 1 [ 1.449047] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b [ 1.449741] SMP: stopping secondary CPUs [ 1.450105] Kernel Offset: disabled [ 1.450419] CPU features: 0x000000,00080000,20002001,0400421b [ ---truncated--- | ||||
| CVE-2025-39892 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: soc-core: care NULL dirver name on snd_soc_lookup_component_nolocked() soc-generic-dmaengine-pcm.c uses same dev for both CPU and Platform. In such case, CPU component driver might not have driver->name, then snd_soc_lookup_component_nolocked() will be NULL pointer access error. Care NULL driver name. Call trace: strcmp from snd_soc_lookup_component_nolocked+0x64/0xa4 snd_soc_lookup_component_nolocked from snd_soc_unregister_component_by_driver+0x2c/0x44 snd_soc_unregister_component_by_driver from snd_dmaengine_pcm_unregister+0x28/0x64 snd_dmaengine_pcm_unregister from devres_release_all+0x98/0xfc devres_release_all from device_unbind_cleanup+0xc/0x60 device_unbind_cleanup from really_probe+0x220/0x2c8 really_probe from __driver_probe_device+0x88/0x1a0 __driver_probe_device from driver_probe_device+0x30/0x110 driver_probe_device from __driver_attach+0x90/0x178 __driver_attach from bus_for_each_dev+0x7c/0xcc bus_for_each_dev from bus_add_driver+0xcc/0x1ec bus_add_driver from driver_register+0x80/0x11c driver_register from do_one_initcall+0x58/0x23c do_one_initcall from kernel_init_freeable+0x198/0x1f4 kernel_init_freeable from kernel_init+0x1c/0x12c kernel_init from ret_from_fork+0x14/0x28 | ||||
| CVE-2025-39887 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Fix null-ptr-deref in bitmap_parselist() A crash was observed with the following output: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 2 UID: 0 PID: 92 Comm: osnoise_cpus Not tainted 6.17.0-rc4-00201-gd69eb204c255 #138 PREEMPT(voluntary) RIP: 0010:bitmap_parselist+0x53/0x3e0 Call Trace: <TASK> osnoise_cpus_write+0x7a/0x190 vfs_write+0xf8/0x410 ? do_sys_openat2+0x88/0xd0 ksys_write+0x60/0xd0 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> This issue can be reproduced by below code: fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY); write(fd, "0-2", 0); When user pass 'count=0' to osnoise_cpus_write(), kmalloc() will return ZERO_SIZE_PTR (16) and cpulist_parse() treat it as a normal value, which trigger the null pointer dereference. Add check for the parameter 'count'. | ||||
| CVE-2025-39879 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ceph: always call ceph_shift_unused_folios_left() The function ceph_process_folio_batch() sets folio_batch entries to NULL, which is an illegal state. Before folio_batch_release() crashes due to this API violation, the function ceph_shift_unused_folios_left() is supposed to remove those NULLs from the array. However, since commit ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method"), this shifting doesn't happen anymore because the "for" loop got moved to ceph_process_folio_batch(), and now the `i` variable that remains in ceph_writepages_start() doesn't get incremented anymore, making the shifting effectively unreachable much of the time. Later, commit 1551ec61dc55 ("ceph: introduce ceph_submit_write() method") added more preconditions for doing the shift, replacing the `i` check (with something that is still just as broken): - if ceph_process_folio_batch() fails, shifting never happens - if ceph_move_dirty_page_in_page_array() was never called (because ceph_process_folio_batch() has returned early for some of various reasons), shifting never happens - if `processed_in_fbatch` is zero (because ceph_process_folio_batch() has returned early for some of the reasons mentioned above or because ceph_move_dirty_page_in_page_array() has failed), shifting never happens Since those two commits, any problem in ceph_process_folio_batch() could crash the kernel, e.g. this way: BUG: kernel NULL pointer dereference, address: 0000000000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] SMP NOPTI CPU: 172 UID: 0 PID: 2342707 Comm: kworker/u778:8 Not tainted 6.15.10-cm4all1-es #714 NONE Hardware name: Dell Inc. PowerEdge R7615/0G9DHV, BIOS 1.6.10 12/08/2023 Workqueue: writeback wb_workfn (flush-ceph-1) RIP: 0010:folios_put_refs+0x85/0x140 Code: 83 c5 01 39 e8 7e 76 48 63 c5 49 8b 5c c4 08 b8 01 00 00 00 4d 85 ed 74 05 41 8b 44 ad 00 48 8b 15 b0 > RSP: 0018:ffffb880af8db778 EFLAGS: 00010207 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000003 RDX: ffffe377cc3b0000 RSI: 0000000000000000 RDI: ffffb880af8db8c0 RBP: 0000000000000000 R08: 000000000000007d R09: 000000000102b86f R10: 0000000000000001 R11: 00000000000000ac R12: ffffb880af8db8c0 R13: 0000000000000000 R14: 0000000000000000 R15: ffff9bd262c97000 FS: 0000000000000000(0000) GS:ffff9c8efc303000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000034 CR3: 0000000160958004 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> ceph_writepages_start+0xeb9/0x1410 The crash can be reproduced easily by changing the ceph_check_page_before_write() return value to `-E2BIG`. (Interestingly, the crash happens only if `huge_zero_folio` has already been allocated; without `huge_zero_folio`, is_huge_zero_folio(NULL) returns true and folios_put_refs() skips NULL entries instead of dereferencing them. That makes reproducing the bug somewhat unreliable. See https://lore.kernel.org/20250826231626.218675-1-max.kellermann@ionos.com for a discussion of this detail.) My suggestion is to move the ceph_shift_unused_folios_left() to right after ceph_process_folio_batch() to ensure it always gets called to fix up the illegal folio_batch state. | ||||
| CVE-2025-39878 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ceph: fix crash after fscrypt_encrypt_pagecache_blocks() error The function move_dirty_folio_in_page_array() was created by commit ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method") by moving code from ceph_writepages_start() to this function. This new function is supposed to return an error code which is checked by the caller (now ceph_process_folio_batch()), and on error, the caller invokes redirty_page_for_writepage() and then breaks from the loop. However, the refactoring commit has gone wrong, and it by accident, it always returns 0 (= success) because it first NULLs the pointer and then returns PTR_ERR(NULL) which is always 0. This means errors are silently ignored, leaving NULL entries in the page array, which may later crash the kernel. The simple solution is to call PTR_ERR() before clearing the pointer. | ||||
| CVE-2025-39875 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: igb: Fix NULL pointer dereference in ethtool loopback test The igb driver currently causes a NULL pointer dereference when executing the ethtool loopback test. This occurs because there is no associated q_vector for the test ring when it is set up, as interrupts are typically not added to the test rings. Since commit 5ef44b3cb43b removed the napi_id assignment in __xdp_rxq_info_reg(), there is no longer a need to pass a napi_id to it. Therefore, simply use 0 as the last parameter. | ||||
| CVE-2025-39858 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring Replace NULL check with IS_ERR() check after calling page_pool_create() since this function returns error pointers (ERR_PTR). Using NULL check could lead to invalid pointer dereference. | ||||
| CVE-2025-39856 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw-nuss: Fix null pointer dereference for ndev In the TX completion packet stage of TI SoCs with CPSW2G instance, which has single external ethernet port, ndev is accessed without being initialized if no TX packets have been processed. It results into null pointer dereference, causing kernel to crash. Fix this by having a check on the number of TX packets which have been processed. | ||||
| CVE-2025-39851 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix NPD when refreshing an FDB entry with a nexthop object VXLAN FDB entries can point to either a remote destination or an FDB nexthop group. The latter is usually used in EVPN deployments where learning is disabled. However, when learning is enabled, an incoming packet might try to refresh an FDB entry that points to an FDB nexthop group and therefore does not have a remote. Such packets should be dropped, but they are only dropped after dereferencing the non-existent remote, resulting in a NPD [1] which can be reproduced using [2]. Fix by dropping such packets earlier. Remove the misleading comment from first_remote_rcu(). [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014 RIP: 0010:vxlan_snoop+0x98/0x1e0 [...] Call Trace: <TASK> vxlan_encap_bypass+0x209/0x240 encap_bypass_if_local+0xb1/0x100 vxlan_xmit_one+0x1375/0x17e0 vxlan_xmit+0x6b4/0x15f0 dev_hard_start_xmit+0x5d/0x1c0 __dev_queue_xmit+0x246/0xfd0 packet_sendmsg+0x113a/0x1850 __sock_sendmsg+0x38/0x70 __sys_sendto+0x126/0x180 __x64_sys_sendto+0x24/0x30 do_syscall_64+0xa4/0x260 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] #!/bin/bash ip address add 192.0.2.1/32 dev lo ip address add 192.0.2.2/32 dev lo ip nexthop add id 1 via 192.0.2.3 fdb ip nexthop add id 10 group 1 fdb ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020 bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10 mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q | ||||