Filtered by vendor Nodejs
Subscriptions
Filtered by product Node.js
Subscriptions
Total
160 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-23084 | 2 Microsoft, Nodejs | 2 Windows, Node.js | 2025-11-04 | 5.5 Medium |
| A vulnerability has been identified in Node.js, specifically affecting the handling of drive names in the Windows environment. Certain Node.js functions do not treat drive names as special on Windows. As a result, although Node.js assumes a relative path, it actually refers to the root directory. On Windows, a path that does not start with the file separator is treated as relative to the current directory. This vulnerability affects Windows users of `path.join` API. | ||||
| CVE-2024-27982 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-04 | 6.1 Medium |
| The team has identified a critical vulnerability in the http server of the most recent version of Node, where malformed headers can lead to HTTP request smuggling. Specifically, if a space is placed before a content-length header, it is not interpreted correctly, enabling attackers to smuggle in a second request within the body of the first. | ||||
| CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 367 Http Server, Opensearch Data Prepper, Apisix and 364 more | 2025-11-04 | 7.5 High |
| The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
| CVE-2022-3786 | 4 Fedoraproject, Nodejs, Openssl and 1 more | 4 Fedora, Node.js, Openssl and 1 more | 2025-11-04 | 7.5 High |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. | ||||
| CVE-2022-3602 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 5 Fedora, Clustered Data Ontap, Node.js and 2 more | 2025-11-04 | 7.5 High |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6). | ||||
| CVE-2024-22019 | 4 Netapp, Node.js, Nodejs and 1 more | 6 Astra Control Center, Node.js, Node.js and 3 more | 2025-11-04 | 7.5 High |
| A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits. | ||||
| CVE-2023-32559 | 2 Nodejs, Redhat | 4 Node.js, Nodejs, Enterprise Linux and 1 more | 2025-11-04 | 7.5 High |
| A privilege escalation vulnerability exists in the experimental policy mechanism in all active release lines: 16.x, 18.x and, 20.x. The use of the deprecated API `process.binding()` can bypass the policy mechanism by requiring internal modules and eventually take advantage of `process.binding('spawn_sync')` run arbitrary code, outside of the limits defined in a `policy.json` file. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js. | ||||
| CVE-2023-30590 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-04 | 7.5 High |
| The generateKeys() API function returned from crypto.createDiffieHellman() only generates missing (or outdated) keys, that is, it only generates a private key if none has been set yet, but the function is also needed to compute the corresponding public key after calling setPrivateKey(). However, the documentation says this API call: "Generates private and public Diffie-Hellman key values". The documented behavior is very different from the actual behavior, and this difference could easily lead to security issues in applications that use these APIs as the DiffieHellman may be used as the basis for application-level security, implications are consequently broad. | ||||
| CVE-2023-30589 | 3 Fedoraproject, Nodejs, Redhat | 4 Fedora, Node.js, Enterprise Linux and 1 more | 2025-11-04 | 7.5 High |
| The llhttp parser in the http module in Node v20.2.0 does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). The CR character (without LF) is sufficient to delimit HTTP header fields in the llhttp parser. According to RFC7230 section 3, only the CRLF sequence should delimit each header-field. This impacts all Node.js active versions: v16, v18, and, v20 | ||||
| CVE-2023-39332 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Node.js, Enterprise Linux | 2025-11-03 | 9.8 Critical |
| Various `node:fs` functions allow specifying paths as either strings or `Uint8Array` objects. In Node.js environments, the `Buffer` class extends the `Uint8Array` class. Node.js prevents path traversal through strings (see CVE-2023-30584) and `Buffer` objects (see CVE-2023-32004), but not through non-`Buffer` `Uint8Array` objects. This is distinct from CVE-2023-32004 which only referred to `Buffer` objects. However, the vulnerability follows the same pattern using `Uint8Array` instead of `Buffer`. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
| CVE-2023-39331 | 2 Nodejs, Redhat | 2 Node.js, Enterprise Linux | 2025-11-03 | 7.5 High |
| A previously disclosed vulnerability (CVE-2023-30584) was patched insufficiently in commit 205f1e6. The new path traversal vulnerability arises because the implementation does not protect itself against the application overwriting built-in utility functions with user-defined implementations. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
| CVE-2023-38552 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Node.js, Enterprise Linux | 2025-11-03 | 7.5 High |
| When the Node.js policy feature checks the integrity of a resource against a trusted manifest, the application can intercept the operation and return a forged checksum to the node's policy implementation, thus effectively disabling the integrity check. Impacts: This vulnerability affects all users using the experimental policy mechanism in all active release lines: 18.x and, 20.x. Please note that at the time this CVE was issued, the policy mechanism is an experimental feature of Node.js. | ||||
| CVE-2023-30588 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-03 | 5.3 Medium |
| When an invalid public key is used to create an x509 certificate using the crypto.X509Certificate() API a non-expect termination occurs making it susceptible to DoS attacks when the attacker could force interruptions of application processing, as the process terminates when accessing public key info of provided certificates from user code. The current context of the users will be gone, and that will cause a DoS scenario. This vulnerability affects all active Node.js versions v16, v18, and, v20. | ||||
| CVE-2023-30585 | 1 Nodejs | 1 Node.js | 2025-11-03 | 7.5 High |
| A vulnerability has been identified in the Node.js (.msi version) installation process, specifically affecting Windows users who install Node.js using the .msi installer. This vulnerability emerges during the repair operation, where the "msiexec.exe" process, running under the NT AUTHORITY\SYSTEM context, attempts to read the %USERPROFILE% environment variable from the current user's registry. The issue arises when the path referenced by the %USERPROFILE% environment variable does not exist. In such cases, the "msiexec.exe" process attempts to create the specified path in an unsafe manner, potentially leading to the creation of arbitrary folders in arbitrary locations. The severity of this vulnerability is heightened by the fact that the %USERPROFILE% environment variable in the Windows registry can be modified by standard (or "non-privileged") users. Consequently, unprivileged actors, including malicious entities or trojans, can manipulate the environment variable key to deceive the privileged "msiexec.exe" process. This manipulation can result in the creation of folders in unintended and potentially malicious locations. It is important to note that this vulnerability is specific to Windows users who install Node.js using the .msi installer. Users who opt for other installation methods are not affected by this particular issue. | ||||
| CVE-2023-30581 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-03 | 7.5 High |
| The use of __proto__ in process.mainModule.__proto__.require() can bypass the policy mechanism and require modules outside of the policy.json definition. This vulnerability affects all users using the experimental policy mechanism in all active release lines: v16, v18 and, v20. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js | ||||
| CVE-2023-32003 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-07-03 | 5.3 Medium |
| `fs.mkdtemp()` and `fs.mkdtempSync()` can be used to bypass the permission model check using a path traversal attack. This flaw arises from a missing check in the fs.mkdtemp() API and the impact is a malicious actor could create an arbitrary directory. This vulnerability affects all users using the experimental permission model in Node.js 20. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
| CVE-2023-32002 | 2 Nodejs, Redhat | 4 Node.js, Nodejs, Enterprise Linux and 1 more | 2025-07-02 | 9.8 Critical |
| The use of `Module._load()` can bypass the policy mechanism and require modules outside of the policy.json definition for a given module. This vulnerability affects all users using the experimental policy mechanism in all active release lines: 16.x, 18.x and, 20.x. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js. | ||||
| CVE-2024-3566 | 7 Golang, Haskell, Microsoft and 4 more | 7 Go, Process Library, Windows and 4 more | 2025-06-25 | 9.8 Critical |
| A command inject vulnerability allows an attacker to perform command injection on Windows applications that indirectly depend on the CreateProcess function when the specific conditions are satisfied. | ||||
| CVE-2018-1000168 | 4 Debian, Nghttp2, Nodejs and 1 more | 4 Debian Linux, Nghttp2, Node.js and 1 more | 2025-06-09 | 7.5 High |
| nghttp2 version >= 1.10.0 and nghttp2 <= v1.31.0 contains an Improper Input Validation CWE-20 vulnerability in ALTSVC frame handling that can result in segmentation fault leading to denial of service. This attack appears to be exploitable via network client. This vulnerability appears to have been fixed in >= 1.31.1. | ||||
| CVE-2020-11080 | 7 Debian, Fedoraproject, Nghttp2 and 4 more | 16 Debian Linux, Fedora, Nghttp2 and 13 more | 2025-06-09 | 3.7 Low |
| In nghttp2 before version 1.41.0, the overly large HTTP/2 SETTINGS frame payload causes denial of service. The proof of concept attack involves a malicious client constructing a SETTINGS frame with a length of 14,400 bytes (2400 individual settings entries) over and over again. The attack causes the CPU to spike at 100%. nghttp2 v1.41.0 fixes this vulnerability. There is a workaround to this vulnerability. Implement nghttp2_on_frame_recv_callback callback, and if received frame is SETTINGS frame and the number of settings entries are large (e.g., > 32), then drop the connection. | ||||